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ABSTRACT 

 

 

 As the superparamagnetic limit is reached, the magnetic storage industry looks to 

circumvent the barrier by implementing patterned media (PM) as a viable means to store 

and access data.  Chemical mechanical polishing (CMP) is a semiconductor fabrication 

technique used to planarize surfaces and is investigated as a method to ensure that the PM 

is polished to surface roughness parameters that allow the magnetic read/write head to 

move seamlessly across the PM. Results from this research have implications in 

feasibility studies of utilizing CMP as the main planarization technique for PM 

fabrication.     

Benchmark data on the output parameters of the CMP process, for bit patterned 

media (BPM), based on the machine process parameters, pad properties, and slurry 

characteristics are optimized.  The research was conducted in a systematic manner in 

which the optimized parameters for each phase are utilized in future phases.  The 

optimum results from each of the phases provide an overall optimum characterization for 

BPM CMP.   

Results on the CMP machine input parameters indicate that for optimal surface 

roughness and material removal, low polish pressures and high velocities should be used 

on the BPM.  Pad characteristics were monitored by non destructive technique and results 

indicate much faster deterioration of all pad characteristics versus polish time of BPM 

when compared to IC CMP.  The optimum pad for PM polishing was the IC 1400 dual 

layer Suba V pad with a shore hardness of 57, and a k-groove pattern.  The final phase of 
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polishing evaluated the slurry polishing properties and novel nanodiamond (ND) slurry 

was created and benchmarked on BPM.  The resulting CMP output parameters were 

monitored and neither the ND slurry nor the thermally responsive polymer slurry 

performed better than the commercially available Cabot iCue slurry for MRR or surface 

roughness.  

Research results indicate CMP is a feasible planarization technique for PM 

fabrication, but successful implementation of CMP for planarizing PM must address the 

high initial start up cost, increase in the number of replacement pads, and increase in 

polishing time to reach the required surface roughness for magnetic storage devices. 
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CHAPTER 1:  MAGNETIC STORAGE DEVICES:  PATTERNED MEDIA 

 

 

1.1 Foreword 

 

The hard disk drive is by far the most important member of storage hierarchy in 

modern computers[1].  The magnetic hard disk drive (HDD) currently plays the most 

influential role in the storage industry and this role is continually growing due to 

capacity, performance, and price.  Areal density, also sometimes called bit density, refers 

to the amount of data that can be stored in a given amount of hard disk platter.  Since disk 

platters surfaces are two-dimensional, areal density is a measure of the number of bits 

that can be stored in a unit of area [2].  Since the inception of the original RAMAC by 

IBM in 1956, a variation of scaling laws have been used to increase the areal density of 

HDD [1].  In current longitudinal magnetic recording media, high areal density and low 

noise are achieved by averaging several hundred weakly coupled ferromagnetic grains 

per bit cell [3].  The scaling laws that enable smaller bit and grain sizes will eventually 

prompt a spontaneous magnetization reversal process, which destroys the data, when the 

stored energy per particles competes directly with the thermal energy, at which point the 

maximum reliable areal density is reached, this point is the superparamagnetic limit.  The 

growth rate of magnetic storage density has increased to compound growth rate of 100% 

per year.  At this rate of areal density, the physical limit of areal density known as the 

superparamagnetic limit will soon be reached [4].  To elude the superparamagnetic limit 

new technologies must be developed in order to continue the increase in storage capacity 

or the risk of losing valuable data.  The objectives for this chapter include: 
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1) Detailing the need for increasing the areal storage density for magnetic 

storage devices 

2) Provide fundamental understanding on the feasibility of patterned media 

storage devices 

3) Detail fabrication challenges in making patterned media storage devices and 

the need for chemical mechanical planarization as a fabrication step 

4) Provide a systematic layout for this dissertation  
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1.2 Introduction 

 

1.2.1 Fundamentals of Read/Write Magnetic Hard Drives 

 

Data is read and written on magnetic disks due to the electromagnetic physics 

phenomena. In 1820 physicist Hans Christian Oersted, observed that an electrical current 

flowing in a wire moved the needle of a compass located near this wire. When the 

electrical current was shut down, the compass needle went back showing the location of 

Earth‘s magnetic north pole. Oersted concluded that all conductors (wires) create a 

magnetic field around them when an electrical current is flowing.  When the direction 

(polarity) of this electrical current is reversed, so is the polarity of the magnetic field [5]. 

 In 1831 another physicist called Michael Faraday found out that the inverse was 

also true, if a strong enough magnetic field was created near a wire, electrical current 

would be produced (inducted) in the wire.  If the direction of this magnetic field was 

reversed, the direction of the electrical current was reversed as well [6]. 

 To understand how data is read and written on hard disk drives (HDD) and other 

magnetic devices, it is important to note two electromagnetic properties:  

1) All conductors create magnetic fields around them when there is an electrical 

current flowing  

 2) A strong magnetic field can generate (induct) electrical current on a wire. 

 The HDD read/write head is made up of a U-shaped conductive material with a 

coil wrapped around it. On the process of writing data to the hard disk drive, an electrical 

current is applied to the coil, creating a magnetic field around the read/write read.  This 

field magnetizes the platter surface right below the head, aligning the magnetic particles 

to the left or to the right, depending on the polarity of the electrical current that was 
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applied.  Reversing the electrical current polarity will also reverse the polarity of the 

magnetic field.  A stored bit is a sequence of magnetized particles. 

 In the process of reading data from the hard disk drive, when the head passes on a 

magnetized area either a positive or a negative current will be inducted, allowing the 

drive control circuit to read the stored bits.  Figure 1.1 contains a basic schematic of a 

read/write magnetic hard drive [7].   

 

 

Figure 1. 1 Traditional longitudinal read/write hard drive 

 

1.2.2 Magnetic Hard Drive Fundamentals 

 

 The history of hard disks is intertwined with the history of computing within the 

integrated circuit industry.  The concept of storing large amounts of data on magnetic 

media was already in practice in the early 1950s with magnetic drum memories.  

However, the volumetric density was limited by the relatively low surface-to-volume 

ratio of such devices, meaning these drum memories could not hold much data [8, 9].  In 

a magnetic disk, data is stored on a recording medium (commonly referred to as media), 

which is responsive to the presence of strong magnetic fields, but stable in their absence. 

The storage density that a given medium can sustain is determined by a variety of factors: 

Coil

Magnetic Field Conductive Material

Disk Surface

Magnetic particles

Spinning Direction
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1) Size and uniformity of the magnetic dipoles in the material 

2)  Orientation of the domains,  

3) Coercivity  

4) Temperature stability of the media. 

5) Distance between the magnetic read/write head and the media. 

 Since the magnetic field drops off as the cube of the distance between the head 

and the media, writing and reading smaller spots depends on lowering the distance 

between the head and the magnetic media.  Traditionally, the main component of this has 

been flying height [9].  This requires the read/write head to fly at nanometers above the 

surface in order for the HDD to be efficient. 

 The areal density, also sometimes called bit density, refers to the amount of data 

that can be stored in a given amount of hard disk platter.  Since disk platters surfaces are 

two-dimensional, areal density is a measure of the number of bits that can be stored in a 

unit of area [2].  Since the inception of the original RAMAC by IBM in 1956, a variation 

of scaling laws have been used to increase the areal density of HDD, as shown in figure 

1.2, and with a growth of 100% per year the limit to the scaling laws will soon be reached 

[1].   
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Figure 1. 2 Scaling factors used to increase areal density [10] 

 

 The latest push from the consumer market is to achieve 100 Gb/in
2
 of areal 

storage and this storage density presents a fundamental processing issue.  The problem 

with scaling down the feature size is fundamentally physics problem: decreasing bit size 

while achieving satisfactory signal-to-noise requires decreasing grain size.  Grain size, 

however, cannot be shrunk significantly below its present state–of-the-art value, ~100 

Angstroms (A
o
), without the magnetization of the grains becoming thermally unstable or 

superparamagnetic [11].    

 The scaling laws that enable smaller bit and grain sizes will eventually prompt a 

spontaneous magnetization reversal process which destroys the data.  When stored energy 

per particles competes directly with thermal energy, the maximum reliable areal density 

is reached.  This point is the superparamagnetic limit.  Details in the equations and 

boundary conditions of the superparamagnetic limit are beyond the scope of this 

dissertation but can be found in literature [4, 10-13]. 

1.3 Technologies to Avoid Superparamagnetic Limit 

 

 To circumvent this barrier, three major technologies are being proposed by 

magnetic storage experts. They include:  
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1) Perpendicular recording  

 2) Heat-assisted magnetic recording 

 3) Patterned media.  

It is known that the thermal energy required to reverse the magnetization of a 

magnetic region is proportional to the size of the magnetic region and the magnetic 

coercivity of the material.  This means the larger the magnetic region, the higher the 

coercivity of the material and the less likely the material will spontaneously demagnetize 

by local thermal fluctuations (avoidance of the superparamagnetic limit) [14].    

1.3.1 Perpendicular Recording 

 

 Perpendicular recording uses a higher coercivity material through which the 

magnetic write head‘s penetration depth and geometry are enhanced [14-16].  

Perpendicular recording represents the shortest technological leap as evidenced by the 

recent roll-out the world's first perpendicular hard disk drive by Toshiba [17].  In this 

method the magnetic domain is vertically aligned, shown in figure 1.3, so that more data 

can be stored but as storage growth increases this technology will ultimately succumb to 

the superparamagnetic limit.   
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Figure 1. 3 Perpendicular recording 

 

1.3.2 Heat Assisted Magnetic Recording 

 

 In heat assisted magnetic recording (HAMR), a laser is used to heat up the media 

to reduce its coercivity, thus sufficiently allowing switching of the field by the media 

head [18].  At almost the same instant as the laser is heating the media, the information is 

being written onto the media. HAMR takes advantage of high-stability magnetic 

compounds such as iron platinum alloy and these materials can store single bits in a much 

smaller area without being limited by the same superparamagnetic effect [19]. HAMR 

can theoretically create an areal density of 1 Tb/in
2
 but requires a recorded mark size of 

approximately 25 nm.  For this density the grain size in the recording medium must be 

less than approximately 5 nm to obtain a sufficient signal-to-noise ratio [18-20].   

1.3.3 Patterned Media Data Storage 

 

 The concept of lithographically patterning a hard disk was originally introduced 

to improve head tracking and signal-to-noise ratio, but it is now clear that patterning 

offers the possibility of much higher areal densities than conventional hard disk media.  

Coil

Conductive Material

Magnetic particles vertically aligned

Magnetic field
Disk surface
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A patterned medium consists of an array of discrete elements or ‗‗nanomagnets.‘  Each 

element is a single magnetic domain, with uniaxial magnetic anisotropy so that the 

magnetization points in one of only two directions at remanence, representing 1 bit of 

data as shown in figure 1.4.   

 

 

Figure 1. 4 Patterned media schematic[21] 

 

 The direction of magnetization in each dot (upward or downward) corresponds to 

the digital signal of "0" or "1".  The patterned media‘s advantage is that there is no 

transition noise in the read/write process.  Additionally, the dot size, which determines 

the areal dot density, can be decreased ultimately to the critical grain size of thermal 

stability.  An ultra high recording density beyond 10 Tbit/inch
2
 is therefore expected to 

be achieved by applying the patterned media to the recording system. 

1.3.3.1 Background on Patterned Media  

 

The advantages of patterning recording media were recognized as early as 1963 

by Shew et al.  They showed that discrete patterned tracks on a hard disk platter could 

reduce the cross-talk and noise problems associated with head positioning errors and 

allow increased tracking tolerances [11].  More recently, Lambert et al. have used 

patterned magnetic films to explore narrow track recording [22].  It was shown that 
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patterned media can be used to provide feedback information to a head servomotor, and 

that M3 magnetized patterned media can be used as a read-only storage system [23]. 

The first studies of regular arrays of sub-micron patterned magnetic islands were 

presented in a series of papers by Smyth et al.  The group investigated the  collective  

switching properties of lithographically defined permalloy (NiFe) islands , and compared 

their results with micro-magnetic calculations [24]. 

Gibson et al. investigated the individual switching characteristics of similar 

permalloy particles using magnetic force microscopy (MFM) [25].  These permalloy 

particles behaved identically to single domain particles, and would reverse their 

magnetization under the influence of an MFM tip,  The use of patterned magnetic islands 

as a single-bit-per-island discrete recording medium was not the focus of the 

aforementioned papers but the feasibility for such configurations is evident [11]. 

1.3.3.2 Patterned Media and Areal Density 

 

Patterned media data storage technology aims to increase areal storage density by 

using advanced semiconductor processing techniques.  This techniques are used to 

fabricate nanomagnetic structures for the purpose of isolating individual grains for 

magnetic domains into regular patterns [26, 27].  This technology would allow for 

storage of one bit per cell or grain, which is different from conventional drives where 

each bit is stored across a few hundred magnetic grains.  Without the proper 

understanding of the prominent tribological issues that exist in the fabrication and 

successful operation of patterned media, this technology will remain in research 

laboratories.  Conceivably, a patterned media disk drive will consist of a magnetic slider 

head that reads and writes information onto a spinning disk during flight.  The disk will 
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be comprised of micro to nanoscale magnetic structures that must be planarized to 

prevent lateral collision between the slider and coarse topography on the disk surface. 

Figure 1.5 shows that the individual magnetic domains are initially rough after 

fabrication until a planarization step is employed. 

 

 

Figure 1. 5 Need for BPM planarization 

 

1.3.3.3 Fabrication of Patterned Media 

 

 Some of the fabrication requirements for realizing the patterned media recording 

system include:  highly ordered dot arrays with high aspect ratio, formation of the dot 

arrays in the desired position, mass productivity and low cost, and planarization 

techniques after fabrication for sufficient read/write clearance.  The integrated circuit 

industry has tackled these fabrication limitations and the magnetic storage hard drive 

industry is utilizing those techniques to fabricate patterned media.   

Fabrication of patterned media data storage devices utilizes semiconducting 

manufacturing techniques.  These techniques include but are not limited to 

electrodeposition, evaporation and liftoff, etching processes, and chemical mechanical 

polishing (CMP) for planarization [26].  Figure 1.6 depicts an example of fabricated 
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columns (which consequently have an uneven surface due to the height differential of the 

columns and thereby need planarization) is shown. 

 

 

Figure 1. 6 SEM of nanocolumns for patterned media [26] 

 

There exists a need to understand the fundamental polishing mechanisms for 

planarization of PM.  Optimization technique for planarization of the PM is needed to 

reduce waste and sustainability of consumables.  The nanodots or squares fabricated for 

patterned media have the capacity circumvent the superparamagnetic limit but there 

exists little data that optimizes the parameters for polishing of these structures.  CMP has 

been used since the 1920s for planarization of multiple materials and serves as a viable 

candidate to planarize these surfaces to the nanometer roughness they require for the 

read/write head fly height. 

1.4 Outline of this Dissertation  

 

This dissertation is divided into three main sections; the first phase of this 

dissertation is based on benchmarking the CMP machine process parameters on bit 

patterned matrix configurations.  The second phase focuses on the consumables of the 

CMP process and their use for bit pattern matrix configurations.  The last phase is a 

a) pillars diameter of 57 nm and height of 

115 nm
b) pillars diameter of 70 nm and height of 

150 nm
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completely separate study which is focused on modeling of the abrasive portion of the 

CMP process and detailing the change in mechanical properties as it affects the CMP 

process. 

Chapter 2 explains the evolution of the CMP process from the integrated circuit 

(IC) industrial perspective.  The chapter details the basic mechanisms of the CMP process 

from both a mechanical and chemical aspect, and present in detail the tribological 

mechanisms active during CMP.  The chapter details the various models developed to 

predict the multi-physics phenomena of the CMP process.  This chapter also serves to 

introduce the rest of the results for the phases studied during this dissertation after a full 

understanding of the process parameters and output from the CMP process is fully 

undertaken. 

Chapter 3 focuses on benchmarking the bit patterned matrix data utilizing a 

multitude of metrology tools and analytical techniques.  The chapter details the effects of 

the coefficient of friction, lubrication regimes, material removal rate, and resulting 

surface topographies from polishing the bit patterned media configurations.  Finally the 

chapter offers a statistical analysis to determine the critical parameter in material removal 

from a statistical standpoint while evaluating the CMP process for bit patterned 

configurations versus stand copper thin film polishing.   

Chapter 4 is the first of a two-chapter investigation in the consumables during the 

CMP process.  This chapter deals with the CMP pad and compares three commercially 

popular pad architectures while detailing their material removal rates, surface qualities, 

and coefficient of friction during bit patterned media polishing.  The pad life is 

characterized for bit patterned configurations and a novel non destructive technique 
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utilizing ultrasound detection is detailed and used to monitor pad material properties, 

while scanning electron microscopy is used to monitor the surface characteristics of the 

pad during polishing.  The resulting surface qualities of the wafers are obtained through a 

surface profiler and a correlation between the pad characteristics and CMP output 

parameters is detailed. 

Chapter 5 is the second half of the consumable process investigation for both bit 

patterned configurations.  This chapter focuses on understanding the polishing 

phenomena of the slurry used during CMP and development of novel polymer-ND slurry 

to be used for either blanket or bit patterned copper CMP.  The coefficients of friction, 

material removal rate, and surface quality are compared for three different slurries and an 

investigation into the abrasive polymer-ND slurry concentration is elucidated.    

Chapter 6 reflects a separate modeling study which focuses the evolution 

mechanical properties during the CMP process.  The deterministic microstructural 

variation during polishing is incorporated into a particle augmented lubrication model 

developed at Carnegie Mellon University and the results of the model are presented in 

this chapter.  

Chapter 7 discusses the interaction between the consumables and the machine 

process parameters.  The influence of the optimized bit patterned media CMP is 

discussed in detail.  The chapter provides a detailed account how each parameter affects 

the output parameters of the CMP process. 

Chapter 8 summarizes the work done in this dissertation along with suggestions 

for future work with bit patterned CMP process parameters and optimization techniques.   
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CHAPTER 2:  CHEMICAL MECHANICAL PLANARIZATION 

 

 

2.1 Foreword  

 

 CMP has been described as an enabling technology because the high degree of 

planarization generated with the CMP eases the burden of advanced lithography and 

etching techniques.  The drawback to the CMP process is that it is not stable and well 

controlled and several issues ultimately affect the chip performance.  The semiconductor 

device industry has been focused on implemented an increase in the number of transistors 

on a chip thereby increasing the device density.   

 This approach is emulated by the magnetic storage drive community for the 

aforementioned reasons of current areal density reaching the superparamagnetic limit.  

Both industries are striving to put greater numbers of features on a smaller area.  For a 

complete and through historical development of the CMP process, the rest of the chapter 

explanations on CMP is based on the CMP approach from the semiconductor 

manufacturing industrial standpoint.   

The research objectives of this chapter are: 

1) Provide a fundamental background on the  development of  integrated circuit 

industry 

2) Detail the fabrication steps of integrated chips 

3) Detail the emergence of CMP as a planariazation step for many metals in 

particular for copper in integrated chips 
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4) Detail the fundamental removal mechanisms and the multi-physics 

phenomena of the CMP process 

5) Outline and detail various models developed to predict the CMP process 

6) Provide detail into the forthcoming chapters on CMP and its effect on bit 

patterned matrix configurations. 
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2.2 Introduction:  Development of CMP 

 

During the semiconductor fabrication and microelectronics revolution, the 

industry has been focused on rapidly increasing the number of devices per chip and 

shrinking the critical dimensions of these electronic components.  According to ―Moore‘s 

Law,‖ the demand for the number of transistors per chip will double every 1.5 to 2 years 

in the semiconductor industry [28].  In conjunction with the demand for transistors from 

Moore, the microprocessor performance in terms of millions of instructions per second 

(MIPS) will also double in the same time frame [29].  Figure 2.1 gives a historical 

comparison of the trend of microprocessors according to the semiconductor industry 

performance [30]. 

 

 

Figure 2. 1 Historical comparison of the trend of microprocessors [3] 

 

The International Technology Roadmap for Semiconductors (ITRS) predicts that 

by 2011 over one billion transistors will be integrated on a single monolithic die [31].  

Today‘s state-of –the-art integrated circuits (ICs) contain tens of millions of transistors, 

which are used to amplify and switch electronic signals, capacitors, that are used to block 
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direct currents and allow alternate currents to travel through the chip, and resistors, that 

are used to produce voltage, on a single chip.  A transistor is typically a MOSFET 

(Metal-Oxide-Semiconductor Field Effect Transistor), which consists of a source, gate, 

and a drain.  These devices can be made to operate faster by reducing the size of devices 

and having the devices packed densely into a given chip reducing the distance the carriers 

have to travel to interact [32, 33].  The minimum feature size decreases the size of the 

device itself, and this translates into reduction in intermediate pitch or spacing between 

features.  Figure 2.2 is a basic schematic of the basic MOS capacitor. 

 

 

Figure 2. 2 MOS capacitor configuration 

 

Shrinking of device dimensions has become a crucial caveat for both the 

semiconductor industries and the magnetic storage hard drive industry.  However, the 

explosion in the number of transistors fabricated on a single IC has placed extreme 

demands on electrically interconnecting these devices in the manner necessary to perform 

the logical operations of a modern microprocessor.  The transit time, (Tr ), of electrons in 

a device with velocity (V) is directly proportional to the length of the gate (Lg).  Transit 
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time is the ratio of gate length to velocity of the electron, and the transit times dictate the 

frequency of operation [33, 34].  Understandably, the efforts of the semiconductor 

industry are concentrated on reducing the gate length of the devices themselves with 

current devices having gate lengths on the order of nanometers [35]. 

2.2.1 Multilevel Metallization 

 

For the past 40 years, relentless focus on Moore‘s Law on transistor scaling has 

provided ever-increasing transistor performance and density.  Scientists and engineers 

have predicted the ―end of scaling‖ for these devices, but each time the technology 

reached the predicted barriers, scaling did not stop.  Instead, imaginative new solutions 

were developed to further extend Moore‘s Law [36].  

The fabrication of these small devices faces several design, manufacturing, and 

process control challenges.  Once the devices are fabricated on the silicon substrate in the 

preferred orientation, they need to be connected to a device network between each other 

and connected to the outside world via interconnect materials.  Metallization is the 

fabrication step in which proper interconnection of circuit elements is made; it is the 

general name for the technique of coating metal on the surface of non-metallic objects.  

The metal layers deposited, typically copper, are vacuum deposited by one of four 

methods: filament evaporation, flash evaporation, electron-beam evaporation, or 

sputtering [37].  Details of the deposition process are outside the scope of the research for 

this dissertation; however, further details can be found within the references.  The metals 

connecting the devices at the silicon substrate level are deemed contact or first-level 

metallization, and the metals that connect the devices to the outer world are the second 

level metallization [33, 34].  The materials required for metallization need to be selected 
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based on their mechanical, electrical, and chemical properties since these properties 

dictate the frequency of flow of the charge.  The ITRS dictates that the minimum and 

maximum number of layers in a multi layer metallization (MLM) scheme needs to be 13 

and 17 respectively.  Figure 2.3 shows the cross-section image of a seven-level, multi 

layer metallization scheme with the silicon dioxide interlevel dielectrics (ILD) labeled 

[38, 39]. 

 

 

Figure 2. 3 MLM scheme [12] 

  

As previously mentioned, chip manufacturers wanted to make chips with higher 

speed while simultaneously reducing the device dimensions.  A single MOSFET is 

shown in figure 2.2, with gate (G), source (S), and drain (D) connections labeled. 

Interconnection of this MOSFET with other devices on the chip is not shown and is 
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accomplished through the polysilicon/metal alloy (silicide) gate level and several metal-

SiO2 ILD levels joined together by vertical vias [40].  Fabrication of interconnects was 

vital to the emergence of CMP and is briefly detailed in the following section. 

2.2.2 Interconnect Fabrication  

 

The relentless competitor- and customer-driven demand for increased circuit 

density, functionality, and versatility has led to evolutionary and  revolutionary advances  

in the ―front end‖ of the chip manufacturing line where the devices are fabricated, and the 

―back end‖ where these devices are appropriately wired within the integrated circuit (IC) 

[39]. Chip interconnections, or ―interconnects,‖ serve as local and global wiring, 

connecting circuit elements and distributing power [29].  In order to incorporate and 

accommodate the improvements in decreased feature size, increased device speed, and 

more intricate designs, the semiconductor industry increased research in the ―back end of 

line‖ (BEOL) processes.  This made BEOL processes equally as important as the 

development of the ―front end of line‖ (FEOL) processes to reduce gate oxide thickness 

and channel length in the MLM layers  [41]. 

In order to achieve high device frequency and low feature sizes of the devices, the 

interconnect delay had to be reduced so that the signals could pass faster through the 

metal layers, thus making devices function at greater speeds.  The measure of the 

interconnect delay is the RC delay or the time delay (TRC) in seconds, or the frequency of 

charge flow associated with the interconnect materials is computed as product of 

resistance (R) of the metal lines and the capacitance (C) of the insulating interconnects. 

Substituting for resistance in terms of wiring dimensions and material properties, RC time 

delay can be written as equation (2.1)  [42]: 
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                                    (2.1) 

where ρ is the resistivity of the metallic interconnect, k is the dielectric constant of the 

insulator, εo is the permittivity of vacuum, L is the length of the interconnect line, P is the 

pitch between interconnect lines, and T is the thickness of the line.  Any changes in the 

variables will increase or decrease the interconnect delay.  Reduction of the RC delay 

leads to an increase in the performance of ICs.  Physically, a reduction in the RC delay 

translates to a reduction in the length of the interconnect wiring.  This is why the IC 

fabrication industry has been increasing the number of metallization layers.  

2.2.3 Multilevel Metallization Challenges 

 

 It can be seen from equation (2.1) that there is an increase in the RC delay with 

the decrease in interconnect wiring pitch.  In order to decrease the RC delay several 

options were explored:  

1) Cu has replaced Al as interconnect wiring materials due to its lower resistivity 

2) Several novel low -k materials are being explored 

3) Multilevel metallization scheme of wiring is being implemented.  

Table 1 calculates the RC time constants calculated for a few metals of given Rs (sheet 

resistance) and 1 mm length on 1 µm thick SiO2 [43]. 
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Table 2. 1 Interconnection delay 

30.0825002.01.67Cu

40.1125002.72.65Al

11-140.32-0.425008-105.65W

210.625001513TiSi2

762.225005545TaSi2

13842500~100~35MoSi2

210.625001510CoSi2

690205000~100-Poly-Si

Delay

(ps/mm)

Rs

(Ω/square)

Film 

Thickness

(A°)

Polycrystalline 

film resistivity

(μΩ-cm)

Bulk

Resistivity

(μΩ-cm)

Metal

 
  

It is evident from table 2.1 that semiconductor manufactures would use Al or Cu 

as the interconnect material due to their low RC delay and advantageous material 

properties.  In order to produce the multilevel metallization schemes in figure 2.3 for IC 

devices, the top most layer of the previous metallization layers must be optically flat, and 

in more recent devices, atomically smooth [44].  This is because if there exists any 

residual roughness at the previous layer, it will get compounded as the layers increase, 

and after a couple of compounded layers, the roughness will be so high that lithography 

(patterning) will experience issues with the depth of focus and any further processing will 

not be possible.  To compound the problem of lithographic patterning, the irregular 

surface anomalies cause the variation of the thickness in fine line widths (sub 0.5 µm) 

depending upon photo resist thickness. An effectively planarized surface offers enormous 

benefits such as:  
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1) Higher photolithography and dry etch yields, 

2) Elimination of step coverage concerns  

3) Minimization of prior level defects, 

4) Elimination of contact interruption, undesired contacts, and electro-migration 

effects    

5) Reduction of high contact resistance and inhomogeneous metallization layer 

thickness  

6) Limitation in the stacking height of metallization layers [45]. 

Figure 2.4 shows SEM images of a) unpolished and b) polished MLM schemes. 

  

 

Figure 2. 4 SEM image MLM roughness [12,17] 

 

2.2.4 Copper Emergence  

 

 It can be seen from figure 2.4 that it is not possible to proceed with further 

processing steps as depth of focus issues come up during photolithography.  Several other 

subsequent processing challenges, such as voids within interconnect layers due to 

compounded roughness, also occur.  Thus, the CMP process becomes a crucial 

a)  Roughness resulting from 
metallization

b) Post CMP global planarity 
for metallization
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processing step in device fabrication in order to achieve successful fabrication of MLM 

structure.  Besides increasing the number of metallization layers, reducing the resistance 

of the metal interconnects and the capacitance of the dielectric layer reduces the RC 

delay.  Several electrical and mechanical properties are deemed optimal for selection of 

the correct materials for the metallic interconnects.  For brevity the optimal properties for 

IC fabrication can be found in [46]. 

Based on the necessities of  the IC industry, copper was chosen to replace 

aluminum as the material for metallic interconnects to further reduce RC delay for future 

application trends [47, 48].  Choosing electrically superior copper over aluminum comes 

with an inherent drawback.  Due to the difficulty in dry etching fine line copper, the 

damascene approach was developed to make the metallization layers [49].  These layers 

are fabricated through two different BEOL processes: the subtractive process and the 

damascene process show in figure 2.5. 
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Figure 2. 5 BEOL IC fabrication 

2.2.4.1 Subtractive Etch 

 

 In the subtractive process, the metal leads are patterned by subtractive etching 

followed by the deposition of an interlevel dielectric (ILD) to insulate and passivate the 

metal lines. This process was used for aluminum or tungsten interconnects. 

2.2.4.2 Damascene Process 

 

As Cu cannot be effectively etched due its ability to form non-toxic volatile 

byproducts and its property of diffusion in neighboring materials, present day MLM 

structures are fabricated using the damascene process.  In the damascene process a 

thermal oxide layer is grown on the bare silicon in the preferred orientation.  The oxide 

layer is then etched using photolithography techniques.  A layer of metal is then 

deposited onto the etched dielectric and is polished to ensure planarity as the MLM 

scheme is complied (figure 2.5).  

b)a)
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2.2.5 Options for Planarization 

 

 Several technologies exist that achieve local and global planarity and are utilized 

by the semiconductor and magnetic storage industry. Techniques such as spin on 

deposition (SOD), reflow of boron phosphorous silicate glass (BPSG), spin etch 

planarization (SEP), reactive ion etching, and etch back (RIE EB), SOD + EB have been 

discussed in detail by Zantye [45]. The different degrees of global and local surface 

planarity from each fabrication process can be seen from figure 2.7 [50]. These are the 

prominent output parameters of several competing technologies presently being used to 

achieve local and global planarization. 

 

 

Figure 2. 6 Global and surface planarity for planarization processes [23] 
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2.3 Chemical Mechanical Planarization (CMP) 

 

 Chemical mechanical planarization (CMP) is the process of smoothing and 

polishing a surface by the aid of chemical and mechanical forces.  Presently, CMP is the 

only technique that offers both local and global planarity on the surface of the wafer.  The 

plasma-enhanced chemical vapor deposited oxides have limited capability of gap filling 

and are restricted in their gap filling ability below patterns having 0.3-µm feature size. 

High-density plasma deposited oxides have acceptable gap filling capabilities; however, 

they produce variation in surface topography on the local as well as global level.  Even 

though spin on deposited (SOD) doped and undoped oxides and polymeric materials have 

acceptable ability for gap filling, the disadvantages and advantages of the CMP technique 

are listed in Table 2.2 and 2.3 respectively. 

 

Table 2. 2 Disadvantages of CMP 

Disadvantages Comments 

Multi-physics 

phenomenon 

Poor control of process variables and variability in consumables 

leads to fine tuning for proper polishing parameters 

New Defects New defects from CMP can affect die yield (*crucial for sub 

0.25 μ features) 

Process 

developments 

Endpoint detection difficult to control, therefore need for 

additional process control and metrology 

High cost of 

ownership 

Costly equipment and consumables with high turnover rate for 

consumables 
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Table 2. 3 Advantages of CMP 

Benefits Comments 

Planarization Global and local planarization 

 

Material selection Metals and non metals 

Planarization of 

multi material 

services (MLM) 

 

Achieves polishing of multiple materials on same polishing 

step (* polish rate varies) 

 

High surface 

removal rate 

 

Can removal extremely rough surfaces globally and locally for 

tight design restrictions and MLM 

 

Metal patterning CMP is an alternative means of patterning metal eliminating 

need to plasma etch difficult to etch metals and alloys 

 

Metal step coverage Reduction in surface topography reduces metal step coverage 

 

Increased IC 

reliability 

 

Contributes to increasing IC reliability, speed, yield (lower 

defect density) of sub 0.5µm and circuits. 

 

Reduce defects CMP is a subtractive process and can remove surface defects. 

 

No hazardous gases Does a not use hazardous gas common in dry etch process. 
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2.3.1 Applications of CMP 

 

 Historically CMP has been used to polish a variety of metals and was generally 

taken from nature as a polishing method used to produce beautifully finished stones from 

years of exposure to mild chemicals and mechanical forces of nature.  Modern CMP 

originated from methods on polishing glass for optical devices [51].  Manufacture of 

telescopes, microscopes, eyeglasses, and various lenses was well understood and 

established prior to invention of transistors. IBM developed CMP for the semiconductor 

community during the 1980s.  IBM initially applied the CMP process to the silicon 

dioxide inter-level dielectric planarization for the integrated circuit industry. CMP is now 

utilized in planarizing the interlayer dielectric (ILD) and metals used to form 

interconnections between devices [14]. 

 With the successful implementation of CMP for local and global planarization of 

silicon dioxide (SiO2), removal of excessive tungsten (interconnect) from the horizontal 

surfaces on the wafer pattern proved to be an asset for subsequent Al metallization [42, 

52, 53]. CMP was developed with a two-fold approach of planarizing oxide and 

removing the via fill metal from the horizontal surfaces. The major applications of CMP 

are given in table 2.4 [45]. 
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Table 2. 4 Applications of CMP technology 

 

  

The application of CMP in electronic device fabrication is significant in both 

memory and microprocessor device fabrication [46].  From table 2.4 it can be seen that 

CMP is emerging in all fields of study including microelectromechanical systems 

(MEMS) and various other electronic device fabrication.  As devices continuously shrink 

with the technology advancement in device manufacturing, the output specifications of 

the CMP process have become more stringent.   

2.3.2 History of CMP 

 

Zantye et al. covered the basic history of CMP emerging as a technology from the 

an optical lens polishing technology to the modern day semiconductor multiphysics 

problem [41].  The first semiconductor CMP machine was an innovation of the optical 

Materials Application

Al interconnect

Metals Cu interconnect

Ta diffusion barrier/adhension

Ti diffusion barrier/adhension

TiN diffusion barrier/adhension

W interconnection e- emitter

Dielectric Cu-alloy interconnect

Al-alloy interconnect

PolySi gate/interconnect

SiO2 ILD

BPSG ILD

PSG ILD

Polymers ILD

Si3N4 or SiOxNy passivation layer

Other Aerogels ILD

ITO Flat panel

High K dielectrics packing

High Tc Semiconductors interconnect/packaging 

Optoelectronic materials optoelectronics

Plastics, Ceramics packaging

silicon on insulator (SOI) advanced device/circuitry
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lens polishing machine.  The proper polishing abrasives in presence of the slurry 

chemicals were used to achieve a superior degree of precision and flatness to meet the 

demands of the semiconductor industry.  By supplementing mechanical polishing with 

high hardness abrasives, such as silica in an alkaline medium, there are significant gains 

in material removal and reduction in the process time. 

A further improvement to the CMP process was made at IBM in the late 1970s 

and early 1980s.  The new process was faster than the previous silica-based polishing 

method and resulted in ultra-flat, ultra-smooth surfaces to meet the stringent requirements 

of the IC industry [41].  The slurry was later tailored to reduce defects and surface non-

planarity introduced by the etching and deposition processes.  The IBM process was then 

applied for trench isolation in the late 1980s in Japan for various logic and DRAM 

devices.  There was widespread industrial implementation of different variations of the 

CMP process by companies like NEC, Nation Semiconductor, Hitachi, etc.  This led to 

the introduction of the first commercial polisher designed specifically for CMP by Cybeg 

in Japan in 1988.  Later, International SEMATECH identified CMP as a technology 

critical for the future of IC manufacturing and launched a project to develop competitive, 

advanced CMP tools in the US [18]. 

Throughout the history of the CMP process there have been advances in the types 

and capabilities of each polisher.  There have been a total of three different generations of 

polishers and each generation has improved upon the last generation‘s work based on the 

needs of the IC industry.  The first generation CMP tools based on rotational platen had 

low throughput values of about 10–18 wafers/hour [54].  The second generation of CMP 

tools emphasized evolutionary improvements to the original designs and the second 
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generation of polishers included multi-wafer platen polishers and sequential rotational 

systems.  The third generation equipment designs were modified to stay in production for 

long periods of time by giving them adaptability to future technology modifications.  The 

third generation of polishers included sequential linear polishers, orbital polishers, rotary 

inverted polishers, and pad feed polishers [41, 45].  While the details of these polishers 

are not detailed in this dissertation, the evolution of these polishers has been critical in the 

variability of CMP to be utilized in many industries.  

2.3.3 CMP Process 

 

Wear is the phenomenon of material removal from a surface due to interaction 

with a mating surface, either through micro fracture, chemical dissolution, or melting the 

contacting surface [55].  CMP abrasive wear is usually divided into two types: two-body 

and three-body abrasion.  The situation when exactly two bodies are involved in the 

interaction is known as two-body abrasion.  Two-body abrasive wear is caused by the 

displacement of material from a solid surface due to hard particles sliding along the 

surface or when rigidly held grits pass over the surface like a cutting tool.  Two-body 

abrasive wear is a complex process often involving high strain and plastic deformation 

and fracture of micro volumes of the material, which might be described as the removal 

of discrete surface by a harder substance which tends to gauge, score, or scratch.  In the 

case of plastic contact between hard and sharp material and a relatively softer material, 

the hard material penetrates the softer one causing fracture (e.g., two-body abrasion). 

This fracture can lead to micro-cutting and ultimately material removal.  In three-body 

abrasive wear the particles from two-body collisions or introduced wear abrasives are 
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free to roll as well as slide over the surface.  It is through the wear process that raw 

materials can be turned into the electronic instruments used every day. 

The CMP process shown in figure 2.7 involves mounting a wafer with a thin film 

of metal or oxide deposited on it onto a spindle.  A downward force is exerted on the 

wafer pressing it onto a rotating polymer pad while a liquid containing colloidal abrasive 

particles and dissolved chemicals, labeled slurry, is introduced in the space between the 

pad and the wafer.  

 

 

Figure 2. 7 Schematic of CMP process 

  

This process employs both solid on solid (e.g., pad on wafer surface two-body 

abrasion) and solid on liquid (pad, wafer, with abrasive nanoparticles) three-body 

abrasion wear to polish the surface of thin films to atomic smoothness as shown in figure 

2.8.   
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Figure 2. 8 Three body abrasion on CMP process 

 

 The slurry, which includes abrasive nanoparticles, polishes (or wears) the film 

surfaces by the combined action of chemical corrosion and mechanical removal. 

Therefore the CMP process can be described as a process which uses the combination of 

mechanical energy from the pad and abrasives and chemical energy from the slurry 

chemicals to polish and remove material from the wafer surface.  The major consumables 

for bit patterned matrix configurations investigated in this dissertation are the polymer 

polishing pads and an initial investigation into the slurry abrasives with a novel slurry 

developed. Details for the pads and slurry will be discussed in subsequent chapters.  

2.3.4 Material Removal Mechanism 

 

 As mentioned above, the CMP process involves both chemical and mechanical 

components acting in synergy to bring about removal of excess material as well as 

planarization of the surface topography.  It is important to understand the mechanism of 

material removal during CMP.  Studies by Ahmadi et al, have characterized removal 

during CMP into four different categories [56, 57]: 
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1)  Abrasive wear 

2) Adhesive wear 

3) Corrosive wear 

4) Erosive wear. 

  This section provides insight into the chemical and mechanical aspects of CMP, 

which are responsible for material removal. 

2.3.4.1 Mechanical Aspects of CMP 

 

 The mechanical aspects of the CMP process deal solely in abrasive wear of the 

mating surfaces, whether it is wafer to pad abrasion or slurry abrasive to pad abrasion.  

 From figure 2.8, two body wear abrasion occurs when the abrasive particles from 

the slurry interact with the wafer surface, and also when the pad surface asperities 

(surface protrusions) slide against the wafer surface.  As the roughness of the pad is on 

the order of microns and the size of the abrasive particles is on the order of nanometers, a 

significant amount of the two body abrasion takes place between the pad and the wafer 

asperities.    

 The interaction of the pad and wafer asperities, and the slurry abrasives leads to 

three body abrasion.  Three body abrasions are much more complicated than the standard 

two body abrasion but results in lower removal rates and can lead to a reduction in 

surface defects.  In three body abrasion the abrasive particles that come in contact with 

the wafer asperities, are held in place under a given pressure by the pad asperities.  As the 

abrasive particles are dragged across the wafer surface under pressure applied, ploughing, 

and cutting processes occur simultaneously resulting in the material removal from the 
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wafer surface.  Figure 2.9 is a simplified graphical representation of the interface during 

CMP. 

 

 

Figure 2. 9 Three body abrasion during CMP 

 

The relative velocity of the wafer/pad interface aids in the removal process 

through the momentum transfer of abraded particles from the wafer and the abraded 

slurry particles as the centrifugal forces force these particles from the interfaces.  This 

erosive wear is a function of the fluid motion which is covered in the fluid interfaces 

modeling section of this dissertation. 

2.3.4.2 Chemical Aspects of CMP Material Removal 

 

 The ―chemical‖ aspect of chemical mechanical polishing involves the slurry 

chemistry and the ability of the chemically enhanced slurry to modify the wafer surface 

through corrosive wear prior to abrasion by the particles.  The slurry must be able to 

dissolve the abraded material, thereby avoiding re-deposition of the removed material 

onto the wafer surface. As CMP was initially developed to polish dielectrics (oxide layers 

in MOSFETS), the oxide layers were first hydrolyzed by the chemicals in the slurry and 

the abrasive particles abraded the surface.  The same is true for metal polishing; the 

difference lies in the chemical make up for the slurries.  The abrasives in the slurry 
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provide another mechanical abrasion to the surface, but also the abrasive particles bond 

themselves chemically to the wafers surfaces and remove material as they separate from 

the surface, through adhesive wear [41, 49].  Therefore the abrasives have a chemical role 

in removal to accompany their mechanical abrasion. 

 In the case of copper CMP, the slurries can be acidic and alkaline in nature [41, 

58-61].  The metallic copper surface is modified by the active ingredients and pH of the 

slurry.  The ingredients and the pH cause a reaction that dissolves the copper oxides and 

hydroxides and the rate of oxidation of the copper depends on the particular formulation 

of the slurry and concentration of oxidizers and complexing agents of the slurry.  The 

formed surface copper compounds will then be abraded off the surface by the abrasive 

nanoparticles and the pad asperities.  For copper CMP, the abrasive particles only provide 

mechanical action and the chemical nature of the particles plays no part in the material 

removal.  The abraded copper compounds (from the dissolved oxides and hydroxides and 

the abraded particles) are carried away along with the dispensed slurry.  The dissolution 

is very crucial to the removal process, as it avoids re-deposition of the material onto the 

wafer surface.  The material removal rate (MRR) depends equally on the mechanical as 

well as chemical aspects during CMP. 

2.3.4.3 Governing Factors of CMP Process 

 

The CMP process is a multi-physics process with many factors governing the 

final material removal rate and surface quality. It is a process that is judged by its ability 

to have local and global planarity. Wafer planarization may be classified into three 

categories of planarity. These are summarized below and shown in figure 2.10:  
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1) Surface smoothing: feature corners are smoothed and high aspect ratio holes 

are filled    

2) Local planarity: surfaces are flat locally, but the surface height may vary 

across the die  

 3)  Global planarity: the surface is flat across the entire stepper field.    

 The requirement for surface smoothing and local planarity comes from metal step 

coverage, which is defined by the ratio of thinnest point in metal film to the thickest point  

in metal film [62].  The requirement for global planarity increases when the circuit 

dimensions reach sub-0.5µ. 

 Very few planarization schemes obtain the global planarity offered by CMP due 

to the stringent restrictions required to meet the depth of field requirements of 

lithography tools in the sub 0.5 micron regime. Planarization over many micrometers is 

needed to eliminate metal etch residuals, and planarization over several millimeters is 

required to alleviate photolithographic depth of focus limitations [53].  The varying 

degrees of planarity are shown in figure 2. 10. 
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Figure 2. 10 Degrees of planarity in CMP process 

 

 The governing factors behind the planarity results and the multi-physics 

phenomenon can be categorized into process parameters and consumable characteristics.  

Table 2.5 gives an overall list of aspects that govern the output of the CMP process.   
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Table 2. 5 Factors governing output of CMP process 

Process Parameters Consumable Characteristics 

1)  Load applied (Psi) 

2) Angular velocity 

-  Polishing Pad 

-  Wafer carrier 

3)  Slurry flow rate       

 

 

1)  Wafer 

-  Contour and size 

-  Bit pattern density 

-  Pattern dimensions 

- Chemical compatibility of underlying layers to 

slurry   components 

2)  Pad 

-  Bulk characteristics  

-  Surface characteristics 

-  Groove design  

-  Groove dimensions 

3) Slurry 

-  pH/ Zeta potential 

-  Particle size  and distribution 

-  Additives 

-  Oxidizer and concentration 

 

2.3.5 Process Parameters 

 

The applied pressure and velocities of the wafer carrier and polishing pad are the 

most crucial machine process input variables which impact CMP performance.  From 

Preston‘s Law adopted from glass polishing, pressure and velocity during polishing 

dictate the removal rate during the process [51].  The pressure and velocity also dictate 
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the friction characteristics at the interface and determine the regime of lubrication as 

detailed by the Stribeck curve [63].  High pressure and velocities result in high shear 

forces applied on the wafer surface, which can induce delamination, or peeling of the 

deposition layer from the silicon substrate, at the weakly adhered surfaces involving ILDs 

[64].  The other process parameters that have an effect on the removal rate include slurry 

flow rate and pad surface temperature. These factors have been previously investigated 

by Mudhivarthi and Zantye [41, 46].   

2.3.6 Consumable Characteristics 

 

The characteristics of the wafer being polished have a significant effect on the 

CMP process.  The size and shape of the wafer determines the contact area and the 

polishing uniformity across the wafer surface during polishing.  The wafer shape also 

changes the interaction between pad and the wafer at different pressure settings resulting 

in a change in contact dynamics at the surface [65].  Looking at the die level, the pattern 

density and dimensions along with the layout of the pattern in a die affects the uniformity 

within the die resulting in change in uniformity of polish and generation of post CMP 

characteristics [66].  This process of pattern density and uniformity becomes important in 

the magnetic storage hard drive community as the flight height of magnetic head and the 

ability to access memory is dependent on the pattern density and planarity of the surface.   

The polishing pad is consumable of CMP, which provides a major part of the 

mechanical component to polishing with a 550 million dollar economic impact.  The 

asperities, or roughness of the pad surface, directly determine the contact area for 

material removal (this is also dependent on the pressure applied).  A secondary function 

of the pad asperities is to prevent the abrasive particles of the slurry from sliding off the 
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pad due to centrifugal forces of rotation and to have an efficient pad-wafer contact.  The 

abrasive particles, which are held at the contact by the pad asperities, are the only 

particles available to provide active mechanical component during CMP.  Typically a 

polishing pad is constituted of two sections: the top section of the polishing pad, which 

consists of grooves and surface asperities, and the bottom bulk portion of the pad, which 

supports the upper portion and helps in achieving polishing uniformity [67].  The two 

sections of the pad are either fabricated together or applied together for specific CMP 

applications.  The polishing pad is fundamental in material removal through two body 

abrasion and must also transport the slurry effectively to the polishing surface [68].  The 

dimensions of the pad groove, such as the width and depth of the groove, along with the 

groove pattern are also important to have a uniform slurry distribution on the pad surface. 

 Out of all the consumables the slurry and its chemical constituents have the most 

influential economic impact with profits and sells above two billion dollars a year [69]. 

CMP slurry is comprised of oxidizers, complexing agents, abrasive particles, and 

dispersants which all aid in the ―chemical‖ part of the CMP process.  The slurry plays a 

critical role in modifying the surface being planarized, abrading the surface, and also 

dissolving the abraded debris. The concentrations of its various constituents significantly 

influence the output of CMP.  The particle size distribution, zeta potential, uniform 

dispersion, and other characteristics need to be maintained and monitored continuously to 

avoid formation of agglomerated particles or chipped particles.  If the slurry 

characteristics are not closely monitored the wafer surface will end up being severely 

scratched, hampering the device yield and impacting the overall performance of the 

device. The slurry also acts as a barrier chemical selectivity layer for the different 
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underlying layers (ILD and barrier layers) that are not supposed to be polished.  The 

barrier layer is created by utilizing suitable additives and pH conditions.  Consequently 

this is where much of the research in polishing has been focused.  Successful 

implementation of the CMP process significantly depends on optimizing the process 

parameters and selections of the consumables to ensure product performance and 

reliability.   

2.4 Tribology of CMP Process 

 

In order to truly understand the material removal mechanisms and the output 

during the CMP process, understanding of the tribological aspects of polishing is 

fundamental.  Tribology is the science and engineering of interacting surfaces in relative 

motion.  It includes the study and application of the principles of friction, lubrication, and 

wear. It is easy to ascertain that CMP is a tribology process from the applications of two-

body and three-body abrasion, to the friction regimes during polishing, and the resulting 

material removal or wear during polishing.   

2.4.1 CMP Process 

 

CMP is an abrasion process which involves rubbing of wafer and pad surfaces in 

the presence of chemical slurry and abrasive particles.  During the CMP process, low 

friction and efficient lubrication are desirable, but the optimization of the process focuses 

on highly controllable material removal as well as a great surface quality.  Since the 

pressure and velocity are the major contributors to the removal process during CMP it is 

evident that the frictional forces would play a pivotal role in understanding and 

improving the CMP process.  There are various analytical and theoretical models to 

predict frictional and removal characteristics during lubricating sliding contacts which is 
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closely related to the CMP process [70].  The interface during CMP process is much 

more complicated as compared to the studies on the frictional characteristics considered 

in the aforementioned models.  The models fail to incorporate the abrasive particles for 

three-body wear and the chemical component of the slurry during polishing; therefore the 

applications of these models find minimal application in CMP predictions.  The best way 

to understand the interfacial characteristics (dynamics, material removal, and surface 

tribology) is to study the frictional characteristics in-situ or during the process.  One of 

the most influential parameters for the CMP process is the coefficient of friction during 

polishing.   

2.4.2 Tribo-Metrology of CMP 

 

The coefficient of friction (COF) and the contact acoustic emission signal (AE) 

are crucial in characterizing the friction characteristics of a system consisting of sliding 

surfaces.  The study of these parameters along with the wear rate of the surfaces and pad 

wear are termed ―tribo-metrology‖ by Li et al [71].   

2.4.2.1 Coefficient of Friction 

 

 The coefficient of friction is the ratio of the tangential force that is resisting 

motion to the normal load [55].  The numerical coefficient representing the friction at the 

polishing interfaces reflects the nature of abrasive wear (two-body, three-body wear).  

The COF is influenced by several parameters including the material properties of the 

interacting surfaces, the shear force at the interacting surfaces, the pad‘s mechanical 

properties, the kinematic parameters of the polishing process, slurry viscosity, and 

chemical properties of the slurry and its ability to alter the surface. 
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 As mentioned previously the COF is used to generate Stribeck curves which offer 

an efficient means to monitor tribological processes [63]. The Stribeck curves shown in 

figure 2.11 are generated using COF data and the Sommerfeld number.   

  

 

Figure 2. 11 Stribeck curves generated from COF data [33] 

 

 The COF and Sommerfeld number are used to determine the lubrication regime at 

the polishing interface.  The Sommerfeld number is defined in equation (2.2),   

 
f

eff

U

p
S     (2.2) 

where µ is the viscosity of the lubricant, U is the relative velocity, p is the applied 

pressure, and δeff is the effective lubricant film thickness.  The Sommerfeld number can 

be calculated since the process parameters dictate the pressure and velocity.  The 

viscosity of the slurry is calculated based on the manufacturers‘ specifications, while the 

effective lubricant film thickness is the variable that does not remain constant and is 

estimated to be pad surface roughness based on literature [72].  To account for deviations 

of the slurry film thickness on different grooved pads, a dimensionless factor has also 

been suggested. 
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 Based on figure 2.11 there are three different major regions of lubrication that can 

contribute or negate material removal, boundary lubrication, mixed or partial lubrication, 

and hydrodynamic lubrication at a lubricated frictional interface.  Studies have shown 

that there are minor regimes such as hydrostatic and elastohydrodynamic lubrication 

regimes that are not investigated in this thesis due to their small contribution to the theory 

behind the removal rate [55, 73]. 

2.4.2.2 Boundary Lubrication 

 

Boundary lubrication consists of two-body abrasion on solid-solid contact 

between the wafer and pad during boundary lubrication, where the removal process is 

dominated by surface abrasion.  In this regime, polishing results in severe surface damage 

due to the aggressive abrasion by slurry particles and the polishing pad.   

2.4.2.3 Mixed Lubrication  

 

The mixed lubrication regime consists of a thin film of slurry which partially 

supports the applied pressure, and thus prevents the aggressive abrasion seen from 

boundary lubrication which has no lubrication.  For optimization proposes the CMP 

process should be conducted in this regime to ensure reduction in surface damage.   

2.4.2.4 Hydrodynamic Lubrication    

 

The hydrodynamic lubrication regime is a mode of polishing resulting from the 

entire applied pressure being supported by the interfacial slurry fluid layer.  This will 

result in a very low COF, and therefore a very low removal rate as there is little abrasion.  

Therefore knowledge of the polishing regime is highly beneficial to understanding the 

polishing process. 
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The importance of the process parameters becomes apparent based on the 

lubrication regimes for polishing.  Too little slurry and the surfaces will be abraded with 

high COF and thermal stresses resulting in a highly polished material and high surface 

damage.  If there is too much slurry they hydrodynamic lubrication regime will dominant 

and the result surface will have poor material removal.  Optimization of the process 

parameters in patterned media configurations is detailed in Chapter 3.   

2.4.3 Acoustic Emission 

 

The AE signal is a caveat of the COF and can be monitored during the CMP 

process.  The AE signal is an estimate of the acoustic energy dissipated at the interface 

due to the mechanical interactions of sliding surfaces and abrasive particles at the 

interface.  The shear generated by the down pressure and platen rotation brings about a 

strain in the thin film that is being polished and thus is also responsible for material 

removal.  If the shear force is sufficient enough to overcome the interfacial adhesion of 

the thin film and the buried layer, the interfacial adhesion energy is dissipated in the form 

of acoustic vibrations.  Higher AE signals indicate intense mechanical interactions or 

aggressive abrasion at the interface and lower signal indicates a smooth, mild polishing 

resulting in lower shear forces and less damaged wafer surface.  A noisy signal could 

indicate the presence of slurry agglomerates or delamination at the interface which is 

beneficial in knowing when to stop polishing. 

2.4.4 End Point Detection 

 

The end point detection parameters of the CMP process ensure that the goal of the 

process for wafer uniformity, removal rate, and removal stability are within process 

specifications.  In line and/or in situ metrology that can assess the polish quality of the 
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CMP polishers and product wafers immediately can reduce the wafer test time 

(production time that ensures process specifications are met by polishing first few wafers 

empirically).  There are numerous ways to determine the end point detection (EPD) of the 

CMP process.  A summary of the end point detection methods is listed in the table 2.6. 

 

Table 2. 6 End point detection methods 

Methods To determine EPD Techniques 

Optical Interferometry, reflectance, spectral reflectivity 

Electrical Friction sensing 

Impedance and conductance (non friction sensing) 

Acoustic sensing Generation of acoustic signal from abrasive grinding 

process 

 

From table 2.6, most of the methods involve monitoring a signal which contains a 

signature indicative of an appropriate stopping point.  The optical methods utilize a 

variation of techniques involving light to determine if process parameters are met.  While 

the optical technique was the first utilized, it had the limitation of having to add an extra 

tool to the CMP process altering the overall effect of the CMP process to take 

measurements. 

Electrical EPD systems fall into two subcategories, systems that monitor COF and 

those that do not.  The systems that do not sense friction have typically been proven 

unsuccessful outside research premises [74].  The components for the systems that do not 

monitor COF are intrusive to the process and require electrical connections to the wafer 

during CMP or modifications to the platen/carrier which affect the performance of the 
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tool itself.  The methods that measure the COF are passive and have provided solid 

reliable and viable data included in this dissertation. 

2.4.4.1 EPD, COF, and AE Signal 

 

During the process of CMP, work is done on the wafer by the pad and wafer 

carriers.  This work is done by friction.  As the two surfaces must pass across each other 

and friction is resisting that motion and causes material removal. In metal CMP, the 

material removal will eventually lead to the exposure of the underlying ILD which has a 

different COF than the metal. The EPD for these systems is based on monitoring the 

changes in the motor current to infer the state of the friction between the wafer and the 

pad [74]. 

As mentioned before, the concept behind the AE detection is that the grinding 

action that takes place during polishing generates an acoustic signal. The challenge in AE 

EPD is that the signal must be demodulated to yield information about the polishing 

process. The demodulating methods involve detecting and analyzing the amplitude and 

frequency of the spectral peaks or the acoustic wave velocity.   

The COF and the AE can be constantly monitored and recorded to determine  

EPD of the polishing process [45]. Changes in the AE and COF are indications that a new 

polishing surface interface has been encountered due to the change in properties 

compared to the film that has been removed. Figure 2.12 is a graphical depiction of raw 

data acquired for copper CMP, the transition to the dielectric layer is shown as the signal 

increases.  
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Figure 2. 12 AE signal to CMP polish layer change 

 

From figure 2.12 the copper layer is deposited onto the barrier tantalum layer and 

then polished as the AE signal transitions the onset of polishing of the ILD-SiO2 layer is 

evident.  Either in-situ or post CMP analysis of the COF data allows for the calculation of 

the time to remove a particular layer such as copper, and allows for calculation of MRR 

[75].  Careful monitoring of these parameters can ensure that the samples are not over 

polished, and will avoid surface defects.   

By running a variance sequential probability ratio test (SPRT) on the COF signal 

data, the EPD can be detected more effectively [75].  This will allow for not only the 

removal rate and EPD to be determined but also the uniformity of the polish can be 

estimated from the COF data.  This can be done by monitoring the time for the COF 

transition from one end point to the next end point level.  The longer the transition time, 

the higher the non-uniformity [76].  The same SPRT analysis can be done on the AE 

signal to determine process induced defects such as delamination and generation of micro 

scratches.   
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2.5 Modeling in CMP 

 

 It is evident from previous sections that CMP is a multi physics problem that 

incorporates multiple disciplines such as; chemistry, fluid mechanics, particle dynamics, 

solid mechanics, and physics which all combine to contribute to the removal at the wafer-

pad interface.  The lack of detailed knowledge on these effects on the 2 billion dollar 

semiconductor and magnetic hard drive industry has the driven industry to empirically 

tune the process.  This has lead to several process models developed to help to optimize 

the process and predict the MRR and surface quality after polishing.   

2.5.1 Preston Model 

 

The most basic and referenced model to describe the CMP process was first 

proposed by Preston for glass polishing [51].  From section 2.3.1, the polishing of silicon 

dioxide, which is a form of glass, is approximated by Preston‘s equation, found in 

equation (2.3):   

 

                                      
H

PVK
MRR

p *
              (2.3)        

 

where Kp is the Preston coefficient which incorporates several unknown variables such as 

chemistry effects in the CMP process, P is the pressure applied, V is the relative velocity 

of the wafer/pad interface, and H is the hardness of the wafer surface.  The Preston‘s 

equation states that the material removal rate (MRR) is directly proportional to the 

pressure and the relative velocity and inversely proportional to the hardness of the wafer 

surface.  Preston‘s wear equation has commonly been used as an approximation for 

global MRR [77].  From equation (2.3) the pressure applied is shown in equation (2.4): 
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A

L
P                                                       (2.4) 

 

where L is the load applied, and A is the contact area on the pad.  The contact area is not 

necessarily the geometric area or the actual area surface, because wafer surfaces which 

are mostly patterned have severe topographies.  In these cases the assumed contact area 

will not be the geometric area of the wafer being polished.  This caveat has lead 

researchers to revise Preston‘s equation to account for variability in the surface 

topography based solely on the mechanical interactions of the wafer pad interface.   

2.5.2 Mechanical Models 

 

 A number of sophisticated wafer surface wear models have been developed to 

account for various physical phenomena that take place during CMP.  The mechanical 

models that have been developed can be broken into two major categories, empirical 

wear studies and contact mechanics models. 

2.5.2.1 Empirical Wear Modeling Studies 

 

The models that have employed an empirical wear modeling approach, typically 

account for the pressure and velocity components in the MRR and reference directly back 

to the Preston equation [77-82].  The empirical models do not often take into account all 

of the multiphysics phenomena in the process, and historically these models negate the 

slurry lubrication regime, the abrasive particle dynamics in the system, and the chemical 

effects of the slurry.  Due to these limitations models developed for one tribosystem may 

not be applicable to a different tribosystem [77]. 
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2.5.2.2 Contact Mechanics Modeling 

 

The studies that have taken contact mechanics approach toward the CMP analysis 

assume that the wafer and pad surfaces are in direct sliding contact during the CMP 

process.  These models predict that all MRR is due to the pressure and velocity process 

parameters.  Several modifications to Preston‘s equation have been investigated to 

determine the wear parameters, and the equation has been proven to be non linear 

although the major parameters in the removal process remains unchanged [83-86].  

Understanding of the contact models used in many approaches to CMP involves 

understanding of basic elastic contact. 

 Greenwood and Williamson provided a theory of elastic contact between two 

mating surfaces that a number of CMP mechanical models incorporate.  The Greenwood 

and Williamson (GW) model and other statistical based models represent the contacting 

surfaces (pad or wafer) as a probability distributions function (PDF) of surface heights, 

and by using the PDF calculate the number of asperities contacting the surface.  The 

reaction force (pressure) between the two forces is calculated and utilized to determine 

MRR.   

The weakness of the statistical models is in the model‘s inability to accurately 

determine the contact area distribution as a PDF is used to estimate the surface 

topography [87-90].  To alleviate this approach researchers have used a deterministic 

approach in which the actual pad and surface topographies are found using metrology 

tools.  Since the deterministic models are based upon the geometry of the contacting 

surfaces, it allows for both forces response and contact area distribution to be predicted 

[91-95].  
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 Both methods of modeling exploiting only the mechanical aspects fail to 

incorporate the polishing regime, slurry abrasive particles and their interaction with the 

wafer surface, or the fluid mechanics that play a role in MRR.  

2.5.3 Fluid Mechanics Models 

  

 A set of models has analyzed the CMP process based solely on fluid mechanics 

modeling of the wear.  These approaches assume that the wafer and pad surfaces are 

completely separated by the slurry and fall into the hydrodynamic lubrication regime. 

Nanz and Camilletti, and Steigerwald et al. noted the importance of the slurry flow field 

in the overall CMP process as well as the need for in-depth understanding of the slurry 

flow at the wafer/pad interface [59, 92, 96].  Many of the fluid based models incorporate 

the GW model to solve for a contact stress distribution across the wafer and solve for the 

film thickness to input into the Reynolds equation, a simplified form of the Navier-Stokes 

equation 2.5.  The Reynolds equation is used to relate the slurry pressure field, film 

thickness distribution, and shear rate to the CMP process.  Reynold‘s 1-D equation shown 

in equation 2.6, is used to analyze film thickness and pressure distribution of viscous 

fluids through small gaps (e.g., wafer/pad interface).  The full Navier–Stokes equation is 

shown in equation 2.5,  

 

                                               fp
Dt

Dv
 (2.5) 

 

where v is the flow velocity, ρ is the fluid density, p is the pressure, Ψ is the deviatoric 

stress tensor, and f represents body forces (per unit volumes).  Equation (2.5) is 
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simplified for Newtonian fluids, incompressible, constant viscosity, steady state flow, in 

one dimension to Reynold‘s equation shown in equation 2.6, 

                                                 
dx

dh
U

dx

dp
h

dx

d
63                                              (2.6) 

 

where p is the hydrodynamic pressure, h is the local film thickness, µ is the dynamic 

viscosity of the slurry, U is the relative velocity of the bottom surface (pad), and x is the 

downstream distance.  The slurry pressure distribution is key parameter in the fluid 

mechanics modeling of CMP because it dictates whether the wafer and pad surfaces are 

in contact (negative pressure) or are completely separated by the fluid (positive pressure).  

Results from the solutions of the Reynolds equation are then combined with mass 

transport theory in order to predict the material removal rate distribution over the surface 

of the wafer.  

 Most of the aforementioned fluids modeling studies neglected the effect of the 

abrasive particles on the rheology of the slurry.  Studies assumed that the wafer was fixed 

and the pad was the only rotating surface, which is not the case in the industrial process 

in which the pad and wafer rotate about different axes.  These studies do not account for 

the wafer bending, pad deflection, slurry particle entrapment on the pad, or the 

corrosivity of the slurry on the surface as it ―breaks down‖ the surface prior to polishing.   

2.5.4 Hybrid Models (PAML) 

 

 In order to fully incorporate all of the physical aspects of the CMP process several 

hybrid models have been developed to try to successfully predict process outcomes.  

These models have combined the contact mechanics and abrasive particle into one model, 

while other studies have integrated the fluid mechanics and contact mechanics into their 
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predictions [78, 81, 82, 97-99].  While these studies included one or two of the main 

physical aspects the model by Terrell and Higgs captures all combinations of the physics 

of CMP.  This model contains the fluid continuum modeling for the slurry flow and 

pressure distribution, the deterministic contact mechanics modeling allowing for true 

forces response and contact area distribution to be predicted, particle dynamics modeling 

of the abrasive particles in the slurry, and first principle wear modeling.  This model was 

unique in the fact that it uses first principle approaches to model the CMP process, 

including the actual measured surface of the sample to be polished, the model has the 

variability to change the micro scale input parameters, and it is one the first models that 

allow for greater prediction of local wear phenomena.  The model did not incorporate 

surface properties and characteristics and the analysis of the hardness variation within the 

PAML was investigated and discussed in subsequent chapters.   

2.6 Challenges During the CMP Process 

 

 Although CMP has become the choice for local and global planarization, it also 

comes with its own inherent challenges as with any planarization process.  The 

challenges for the process start with the number of materials utilized for copper/low k 

integration. Throughout this research project the challenges faced are: 

1) Local and global non planarity 

2) Etching and contamination  

3) Microscratching 

4) Delamination. 
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The following sections will detail the challenges faced when polishing bit 

patterned matrix configurations.   

2.6.1 Non Planarity 

 

 The post polish planarity is a result of several factors and cannot generally be 

limited to one factor.  The etch and dissolution rate of the slurry, pad asperities contact 

area, and non-uniform pressure distribution on the patterns with line width and density 

issue are a few of the issues [100, 101].  Figure 2.13 shows the various post CMP surface 

characteristics that result due to the factors at different pattern densities and line widths.   

 

 

Figure 2. 13 Cu CMP surface characteristics 

 

1) Copper thickness after deposition

2) Copper thickness after Bulk polishing (smoothing)

3) Copper thickness after 2nd polish to clear bulk deposition

4) Copper thickness after barrier removal

Sub micron feature fill

Global planarity
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From the figure 2.13 the second and third step prove to be the most critical in 

compared to the global planarization step.  There are four major surface defects that 

result in a surface that deviates from a planar surface: 

1)  Dishing 

2)  Erosion 

3)  Oxide loss 

4)  Metal loss. 

2.6.1.1 Dishing and Erosion 

 

A schematic illustration of dishing and erosion defects is shown in figure 2.14.  

The dishing effect is characterized by high polishing rates in localized regions where the 

pattern is significantly different from its surrounding.  The formation of trough shaped 

dish has been attributed to excessive over polishing in these areas and an efficient EPD 

helps to prevent this defect.   

 

 

Figure 2. 14 CMP challenges 

 

2.6.1.2 Oxide and Metal Loss 

 

 During copper CMP, a minuscule amount of over polishing is required to remove 

all metallic residues on the dielectric surface to ensure electrical or magnetic isolation 

between adjacent components.  Oxide loss is the loss of the field oxide next to an array of 

Illustration of Only Dishing 

Effects on a Polished Wafer

Illustration of Only Erosion 

Effects on a Polished Wafer

Illustration of Dishing and 

Erosion Effects Combined
Illustration of Only Dishing 

Effects on a Polished Wafer
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thin metal lines separated by a wide oxide pattern [102, 103].Metal loss is the total loss of 

thickness of metal lines separated by a thin oxide pattern.   

All of these post CMP characteristics affect the electrical properties of the 

interconnect structure, chip reliability, and induce non planarity over the wafer surface, 

which in turn causes photolithography issues negating the initial use of CMP.  The 

process parameters and consumables that cause these characteristics need to be 

understood in detail to avoid reduction in device yield.  

2.6.2 Surface Scratches 

 

The mechanical interaction of the abrasive particles within the surface of the 

wafer (two body abrasion) leads to plastic deformation and surface damage to the wafer 

surface.  Although the plastic deformation is necessary to complete the fundamental job 

of CMP process, scratches, both macro and micro, can form due to the deep indentation 

and dragging of the abrasive particles as seen in figure 2.15.  

 

 

Figure 2. 15 Optical image of surfaces scratches from CMP 

 

Many factors such as particle size, distribution, and formations of agglomerates 

due to slurry pH are possible factors contributing to surface scratches.  A number of the 

surface scratches can be removed during the final buffer polishing, but the deeper 
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scratches are permanent and cannot be removed from the surface.  As with dishing and 

erosion, the surface scratches reduce the usable yield of the wafers and impact electrical 

and magnetic schematic designs.  Development of novel slurries to reduce scratches 

while maintaining performance continues to be a driving factor in research and is 

presented in chapter 5 of this dissertation.   

2.6.3 Delamination  

 

In conjunction with replacing aluminum with copper, another way to reduce RC 

delay is introduction of materials that have lower dielectric constant (low-k) than SiO2.  

The drawback of introducing low-k materials is that they are mechanically weak 

materials [46, 104-109].  The low-k materials cannot withstand the shear forces applied 

by the shearing motions of the platen and wafer carrier during CMP.  Their interfacial 

adhesion energies are low and even moderate frictional forces can induce failure of these 

interfaces [110].  The delamination shown in figure 2.16 has not been attributed to one 

factor but studies have proven that in order to reduce the delamination low pressures and 

velocities are ideal to during the CMP process.  
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Figure 2. 16 Delamination from copper CMP 

 

Reducing the pressure and velocity leads to an increase in the number of polishes 

needed to complete a cycle for an individual wafer and an increase in processing time 

ultimately costing industry money.  Therefore, fundamental studies are under current 

investigation to help understand the delamination phenomena.   

 The aforementioned defects destroy the devices and increase the cost of 

production.  These defects along with post CMP characteristics such as dishing and 

erosion need to minimized if a successful implementation of the process is to be achieved 

[46].  Yield and throughput of the polishing process is highly dependent on the process 

parameters and consumable characteristics which is the focus of this dissertation.     

2.7 Conclusion Research Objectives  

 

 The CMP process is a multidisciplinary problem in which the output metric are 

not directly tied with any one input metric.  As shown in figure 2.17 the process must be 

broken into several sub factions and investigated individually in order to fully understand 

each parameter‘s contribution to the output.   
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Figure 2. 17 CMP process factors 

 

 Figure 2.17 shows the CMP process broken into its individual subsections.  The 

bolded subsections are detailed and outlined in this dissertation.  All of the output factors 

are characterized based on the input parameters.  The objectives of this research are to 

broken into phases and are as follows: 

The first phase of this research will provide:  

1)  Provide benchmark data CMP on BPM configurations  

2)  To optimize the MRR and surface quality based on input parameters 

3)  Evaluate mechanical properties evolution during CMP of BPM 
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4) Complete a statistical analysis on the input parameters to determine which 

parameter in paramount in BPM CMP. 

Following optimization of the machine parameters Phase II will: 

1) Investigate pad wear on BPM CMP   

2) Perform a parametric study of pad wear, pad roughness, COF, MRR, surface 

morphology 

3) Give a qualitative analysis on the pad life, surface characteristics of the wafer, 

pad, and polishing regime  

4) Determine optimal polishing pad for CMP of BPM from three commercially 

available pads. 

Finally the optimized machine parameters and optimal pad are used in phase III which 

will: 

1)  Develop and investigate new nanodiamond (ND) slurry for BPM CMP 

2)  Determine the MRR and surface quality based on the new ND slurry. 

3)  Compare and contrast the novel ND slurry versus industrial slurry CMP. 

This dissertation also contains a separate investigation into microstructural 

variation in mechanical properties during polishing and evolution of the MRR and 

surface roughness due to the variation.  A model is developed to predict the evolution for 

standard abrasive grinding process and the resulting surface qualities and MRR are 

reported.  The model uses deterministic pad and wafer surfaces to check validate the 

PAML model developed at CMU, based on incorporation of microstructural variation.   
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CHAPTER 3:  CMP PROCESS MACHINE PARAMETER 

OPTIMIZATION  

 

 

3.1 Foreword 

 

 Patterned media data storage technology aims to increase areal storage density by 

utilizing chemical mechanical planarization (CMP) as a planarization technique to create 

atomically smooth surfaces for the read/write head to fly across.  Due to the novelty of 

the patterned media process there is limited data on the planarizing process of the 

patterned media (PM) structures.  This phase of research focuses on improving the output 

parameters of material removal and local and global planarity, based on the machine 

input parameters of pressure and velocity from figure 2.17, and detailed in figure 3.1. 

 

 

Figure 3. 1 Machine process parameters optimized for PM polishing 

 

 These machine parameters have been proven to be the main contributing factors 

in material removal and surface quality for integrated circuit CMP, and therefore shall be 

investigated in this chapter.  A secondary analysis is performed based on the evolution of 

the mechanical properties during polishing, while a tertiary statistical analysis of variance 

(ANOVA) on the fundamental machine input parameters is analyzed and compared 

against Preston equation for MRR on patterned SEMATECH copper wafers.    
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In this research, bit patterned matrix (BPM) SEMATECH media samples of Cu 

are polished at various pressure and speeds and the material removal rate and surface 

quality are analyzed as an initial case study on the feasibility of CMP for patterned media 

fabrication.  The pre-polishing and post-polishing hardness and elastic modulus were 

obtained through nanoindentation and discussed in further detail.  The purpose is to 

optimize and benchmark data on CMP of patterned media configurations.  In particular 

the goals of this research are as follows: 

1)  Provide benchmark data CMP on BPM configurations  

2)  To optimize the MRR and surface quality based on input parameters 

3)  Evaluate mechanical properties evolution during CMP of BPM 

4) Complete a statistical analysis on the input parameters to determine which 

parameter in paramount in BPM CMP. 



www.manaraa.com

 

67 

 

3.2 Patterned Media Data 

 

As described in chapter 1, the data storage industry aims to increase areal storage 

density by using patterned media (PM) as a new storage technology.  PM  uses advanced 

semiconductor processing techniques to fabricate nanomagnetic structures for the 

purpose of isolating individual grains for magnetic domains into regular patterns [26, 27].  

This technology would allow for storage of one bit per cell or grain as shown in figure 

1.4 in chapter 1.  PM is different from conventional longitudinal drives, shown in figure 

3.1, where each bit is stored across a few hundred magnetic grains.  

 

 

Figure 3. 2 Conventional longitudinal magnetic storage 

 

As recently as August 2010, Toshiba successfully created a 2.5 Tbit hard disk 

using PM.  The fabrication of the disk is the first successful PM hard disk created at the 

time, but it lacked the functionality of writing or reading data on the disk due to 

read/write head fly height issues [17].  Without proper understanding of the prominent 

tribological issues that exist in the fabrication and successful operation of the read/write 

head in patterned media, this technology will contain remain in research laboratories.  

Conceivably, a patterned media disk drive will consist of a magnetic slider head that 
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reads and writes information onto a spinning disk during flight. The Toshiba disk was 

comprised of micro to nanoscale magnetic structures that must be planarized to prevent 

lateral collision between the slider and coarse topography on the disk surface as shown in 

figure 3.3.   

 

 

Figure 3. 3 Read/write slider head on PM 

 

Fabrication of patterned media data storage devices utilizes semiconducting 

manufacturing techniques.  These techniques include and are not limited to 

electrodeposition, evaporation and liftoff, etching processes, and chemical mechanical 

polishing (CMP) for planarization [26]. 

As discussed in chapter 2 the CMP process, shown in figure 3.4, is a vital interim 

fabrication step for integrated circuits (IC) and data storage devices where it is used to 

planarize thin film surfaces down to atomic smoothness. 
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Figure 3. 4 CMP process 

 

The material removal rate (MRR) affects the surface topography and thereby 

performance and reliability.  The MRR corresponding to CMP is given by the 

rudimentary Preston equation, which contains the load applied, the relative velocity of the 

pad to the wafer carrier, the Preston coefficient that includes chemical dependencies, and 

the hardness of the material.  Tribological MRR models mainly account for the 

mechanical removal [99, 111] and weakly account for the chemically-induced removal 

[66, 112] by using a sophisticated form of the well-known Preston equation (3.1) 

 

                                                     (3.1) 

  

where k is the Preston coefficient which accounts for the chemical and mechanical 

removal based on polishing experiments, Papp is the applied pressure on the wafer, U is 

the relative velocity between the wafer carrier and polishing pad, H is the hardness of the 

material being removed, and MRR is the material removal rate (typically in nm/min). 

 Since CMP is predominantly used for semiconductor IC applications, there is 

limited data available related to the polishing of thin films in PM configurations for 

H

UyxPk
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advanced data storage applications.  Therefore, this effort will provide key benchmark 

data from CMP patterned media experiments that will answer questions about the 

viability of producing atomically smooth PM by CMP.  

3.3 Experimental 

 

3.3.1 Candidate Samples 

 

 Unless otherwise noted, all processing and characterization steps were completed 

in the Nanotechnology Research and Education Center (NREC) at the University of 

South Florida. The wafers unless otherwise noted were purchased from SEMATECH Inc.  

In order to fully characterize and optimize CMP on the 8‖ 1.012μ thick P-type copper 

patterned SEMATCH wafers, the wafers first had to be diced into their individual 

repeating patterns for polishing and mapping purposes.  Prior to dicing a thin layer of SU-

8 negative photoresist was deposited using the laurel spinner on the SEMATCH wafers in 

order to ensure no oxidation or mineral deposition on the wafers during the dicing 

process.  The wafers were diced along the individual dicing axes and resulted in 1‖ by 1‖ 

wafer coupons.  The photoresist was removed using acetone for characterization and 

experimentation.  The wafers utilized a MIT 853 pattern developed and fabricated by 

Park et al. shown in figure 3.5 [113-115].   
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Figure 3. 5 MIT 854 pattern sublevel 

 

 The Cu/low-K CMP test mask set consists of three layers and thus three masks—

M1 mask, via mask, and M2 mask enabling the study of multilayer issues in Cu CMP.  

However, the M1 mask itself is purposely designed to be efficiently used for 

characterizing single layer polishing behaviors.  This M1 single mask contains all of the 

relevant structures for probing electrical or magnetic bond structures all within the same 

M1 layer [116].  Details of the pattern specifications and fabrication are not incorporated 

within this research but can be found in the references [116]. 

This test mask design is concerned with the following aspects of copper chemical 

mechanical polishing (CMP) with either conventional oxide (e.g., SiO2) or low-K 

dielectrics as the recession layer: 

1)  Intralevel Metal 1 (M1) polishing pattern effects resulting from various   

pattern factors created by combinations of different line widths and line 

spaces (e.g., density, pitch) and combinations of structures  

Large Area
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2)  Interlayer multilevel effects of polishing pattern effects with non-uniform 

topography on a layer below; effects on Metal 2 (M2) polishing of surface 

topography generated by M1 polishing 

3)  Intralayer (lateral) and interlayer capacitance and resistance variations from 

polishing non-uniformity (e.g., dishing and erosion) [116]   

 The MIT 854 samples are fabricated in a reversed patterned media configuration 

which is different from that of the patterned media configurations mentioned in chapter 1 

as shown by the gold metal representation in figure 3.6.   

 

 

Figure 3. 6 Patterned media configurations 

 

The planarization of repeating patterns on a Cartesian grid is fundamentally 

similar to conventional PM, and the interest of this dissertation lies in the fundamental 

science with CMP of these types of heterogeneous matrices.  Therefore, through the 

remainder of the experimentation the reversed configuration will be notated as a bit 

patterned matrix (BPM) configuration.  Table 3.1 gives the parameters for the BPM 

characterized samples. 
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Table 3. 1 Metrics for SEMATECH samples 

Characteristic BPM SEMATECH Sample Parameter Value: English (metric) 

Diameter 6 in± .0009 (152.4 mm) 

Length 1 in ± .0039 (25.4 mm) 

Width 1 in ± .0039 (25.4 mm) 

Initial film thickness 3.937E-05 (1.02 µm) 

 

 Figure 3.7 is an optical image of the BPM of the MIT 854 pattern at two different 

magnifications, and figure 3.8 is a focused ion beam (FIB) image of the patterned media 

configuration of the wafers. 

 

 

Figure 3. 7 Optical microscope images of BPM at 30x and 500x 
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Figure 3. 8 FIB image of patterned media configuration 

 

 Figure 3.8 was taken at a magnification of 2000x with an accelerating voltage of 

30 kV.  From the figures above the individual bit pattern matrix (BPM) is shown in 

detail.  This matrix configuration is analogous to the magnetic patterned media storage 

configurations utilized by the magnetic storage industry. The copper BPMs utilized 

throughout this dissertation were fabricated using some of the same semiconductor 

fabrication techniques as magnetic storage industry. 

3.3.2 Mechanical Properties 

 

 The mechanical properties of the thin film being polished play an important role 

during CMP.  The surface scratches, being one of the most critical aspects that determine 

polishing performance depend on the mechanical properties of the sliding surface.  The 

harder the surface being polished, the harder the abrasive needed to polish the surface.  

This relationship can lead to scratches, cracking, dishing, and erosion of the underlying 

material during polishing.  Following the removal of the photoresist, the mechanical 

properties of the BPMs were measured by nanoindentation using the Nano Indenter
®
 XP 

(MTS System Corporation, Oak Ridge, TN) shown in figure 3.9.  The elastic modulus 

and hardness were taken using a MTS Nano Indenter with Testworks 4 software.  
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Figure 3. 9 MTS Nano Indenter® XP 

   

 Nanoindentation is similar to conventional hardness tests, but is performed on a 

much smaller scale using very sensitive load and displacement sensing equipment.  The 

force required to press a three-sided Berkovich-shaped diamond indenter into the 

candidate samples is recorded as a function of indentation depth.  The load and unload 

displacement data obtained in the nanoindentation tests were analyzed according to the 

method of Oliver and Pharr [117, 118].  An example of a standard nanoindentation curve 

is shown in figure 3.10. 

 

 

Figure 3. 10 Typical nanoindentation curve [119] 

Loading curve

Unloading curve
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The stiffness and thereby modulus of elasticity is calculated from the unloading 

portion of the load displacement curve shown in figure 3.10.  The continuous stiffness 

measurement (CSM) technique was used for measuring absolute and depth dependent 

hardness and modulus values.  Equation 3.2 represents the equation utilized by most 

standard nanoindentors;     

 

                                              rE
A

dh

dP
S

2
                                                         (3.2) 

 

where S is the contact stiffness, and A is the contact area.  In order to use equation 3.2 

two keys assumptions are made:  

1)  Deformation upon unloading is purely elastic thus implying that the entire load 

is recovered and there is no plastic deformation into the wafer surface  

2)  Contact between the rigid indenter and the sample is modeled using Sneddon‘s 

equation. 

 The deformation of the sample and of the indenter tip can be combined and given 

as a reduced elastic modulus as shown in equation 3.3  [117, 119]; 
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E

22 111
                               (3.3) 

 

where Er is the reduced modulus, υ is Poissons ratio, and the subscripts i and s represents 

indenter and sample respectively.   

 The hardness of the thin film being indented can be determined as the ratio of the 

maximum load, P, and the area of contact, A, equation 3.4 shown below. 
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A

P
H                                                        (3.4) 

 

 The depth of penetration for the indenter was fixed at ~50% of the sample film 

thickness.  The calculations of mechanical properties were performed at 50% of the 

indentation depth (e.g., ~25 % of the film thickness) [120-122].  At this depth the 

substrate effects as well as the effect of the surface oxide is avoided when calculating the 

mechanical properties [123].  Figure 3.11 shows an AFM image of the indented samples. 

 

 

Figure 3. 11 Nanoindentation into BPM 

 

 Using the optical camera in the nanoindentor recognizable regions were chosen in 

the MTS nanoindentor for pre and post CMP measurements.  A 40-micron by 40-micron 

indention square was created for statistical averaging of the nine indents done per sample. 

Mechanical property values were calculated by averaging a number of separate 

indentations at various depth specifications.  Initially the instrument was calibrated with 

the standard sample (fused silica) provided by MTS along with other single crystal metal 

samples.   
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Values of the hardness and Young‘s modulus before and after CMP have been 

tabulated in table 3.2. Details of the mechanical properties impact on CMP will be 

discussed in later sections of this chapter. 

 

Table 3. 2 Nanoindentation results of BPM copper 

Patterned Copper Sample Elastic Modulus (GPa) Hardness (GPa) 

Unpolished 121.657 3.152 1.249  0.121 

1 Psi 129.828 1.090 1.440 0.058 

3 Psi 135.419 0.752 1.609 0.061 

6 Psi 138.594  1.292 1.962  0.208 

  

3.3.3 WYKO Surface Profiler 

 

 The surface topography and planarity of the wafers was measured using Wyko 

NT9100 surface profiler by Veeco Instruments Inc shown in figure 3.12.    
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Figure 3. 12 Wyko NT9100 surface profiler 

 

 Wyko surface profiler systems are non-contact optical profilers that use two 

technologies to measure a wide range of surface heights, phase-shifting interferometry 

and vertical scanning interferometry. Phase-shifting interferometry (PSI) mode allows 

you to measure smooth surfaces and small steps, while vertical scanning interferometry 

(VSI) mode allows you to measure rough surfaces and steps up to several millimeters 

high [124].  Phase-shifting interferometry (PSI) has typically been used to accurately 

measure previously smooth surfaces.  In phase-shifting interferometry, a white-light 

beam is filtered and passed through an interferometer objective and onto the test surface. 

The interferometer acts as a beam splitter reflecting half of the incident beam onto the 

reference surface within the interferometer and the other half to the test surface.  The 

beams reflected from the test surface and the reference surface recombine to form 

interference fringes. These fringes are the alternating light and dark bands that can be 

seen when the surface is in focus. Figure 3.13 shows a diagram of an interference 

microscope. 
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Figure 3. 13 Interference microscope [124] 

 

During the measurement, a piezoelectric transducer (PZT) moves the reference 

surface a small, known amount to cause a phase shift between the test and reference 

beams.  The system records the intensity of the resulting interference pattern at many 

different relative phase shifts, and then converts the intensity to phase data by integrating 

the intensity data. 

 The phase data is processed to remove phase ambiguities between adjacent pixels, 

and the relative surface height can be calculated from the phase data shown in equation 

3.5; 

 

                                                       ),(
4

),( yxyxh                                                (3.5) 

 

where λ is the wavelength of the source beam, and φ(x, y) is the phase data.  This 

technique for resolving surface heights is reliable when the fringe pattern is sufficiently 

sampled.  When the surface-height difference between adjacent measurement points is 

greater than λ/4, height errors in multiples of λ/2 may be introduced and the phase data 
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cannot be reliably reconstructed [124].  Thus, conventional phase-shifting interferometry 

is limited to fairly smooth, continuous surfaces and due to the rougher BPM surfaces 

encountered during polishing the vertical-scanning interferometry (VSI) technique is 

employed.   

 The basic interferometric principles are similar in both techniques: light reflected 

from a reference mirror combines with light reflected from a sample to produce 

interference fringes, where the best-contrast fringe occurs is typically at the best focus.  

However, in VSI mode, the white-light source is filtered with a neutral density filter, 

which preserves the short coherence length of the white light, and the system measures 

the degree of fringe modulation, or coherence, instead of the phase of the interference 

fringes [125].  The system scans through focus (starting above focus) as the camera 

captures frames of interference data at evenly-spaced intervals.  As the system scans 

downward, an interference signal for each point on the surface is recorded.  The system 

uses a series of advanced computer algorithms to demodulate the envelope of the fringe 

signal.  Finally the vertical position corresponding to the peak of the interference signal is 

extracted for each point on the surface.  Table 3.3 has a comparison of both modes and 

the resolutions ranges for scans. 
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Table 3. 3 Comparison of VSI and PSI modes in Wyko surface profiler 

Process 

Parameter 

VSI 

 

PSI 

Light Neutral Density filter for white light Narrow bandwidth filtered light 

Scanning 

and Focus 

Vertically scans the objective 

actually moves through focus 

phase-shift at a single focus 

point the objective does not 

move 

Data 

processing 

Processes fringe modulation data 

from the intensity signal to calculate 

surface heights 

Processes phase data from the 

intensity signal to calculate 

surface heights 

Vertical 

Resolution 

3nm single scan 

<1nm scans averaged 

3 A° single scan 

1 A °  scans averaged 

Range 2 mm 160 nm 

 

From table 3.3 the range refers to the greatest vertical distance the profiler can 

accurately measure.  Given the high initial roughness of the BPM configurations from the 

MIT 854 pattern the VSI mode was chosen as the mode used in the WYKO NT9100.   

The Wyko NT9100 has several outputs for the roughness of the surface being 

examined, the average roughness, Ra, and the root mean squared (RMS) roughness, Rq, 

are both displayed in the results throughout this dissertation.  Ra represents the two-

dimensional roughness average, the arithmetic mean of the absolute values of the surface 
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departures from the mean plane.  Ra is normally used to describe the roughness of 

machined surfaces.  The effect of a single spurious, non-typical peak or valley will be 

averaged out and have only a small influence on the value.  This statistic cannot detect 

differences in spacing or the presence or absence of infrequently occurring high peaks 

and deep valleys; therefore, it gives no information as to the shape of the irregularities or 

surface [124].  The Ra value is useful in determining the global planarity of the surface as 

it is an average of the hills and valleys of the surface.   

 Rq represents the root mean square (RMS) roughness, obtained by squaring each 

height value in the dataset, then taking the square root of the mean.  RMS roughness is 

generally used to describe the finish of optical surfaces.  It has statistical significance 

because it represents the standard deviation of the surface heights.  RMS roughness 

cannot detect differences in spacing or the presence or absence of infrequently occurring 

high peaks and deep valleys; therefore, these statistics give no information as to the shape 

of the irregularities or surface.  A surface with a high spatial frequency may have the 

same Rq as a surface with a low spatial frequency, but may behave radically differently.  

Because height values are squared in the calculation, the RMS roughness statistics are 

more sensitive to peaks and valleys than average roughness statistics [124].  The RMS 

roughness will be utilized for local planarity and is also insightful for the global planarity 

of the surface.  

Prior to taking any measurements the VSI mode is calibrated against a 10µm step 

height standard that is supplied by VEECO.  This calibration was done daily and the 

system would only allow further measurements if the calibration was within ± 0.5% of 

the calibration sample.   
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3.3.4 CETR Benchtop Chemical Mechanical Polishing Tester   

 

 All of the CMP tests ran on BPM in this dissertation were done with a benchtop 

CMP tester (CETR Inc, Ca) shown in figure 3.14.  The machine process parameters 

discussed in the chapter are inputs for the CMP process on the CMP tester.  

 

 

Figure 3. 14 CETR benchtop tester 

 

The CMP tester has several sensors (force sensor, acoustic emission (AE) sensor, 

and electrical sensor), which are used for in-situ monitoring and optimizing of the CMP 

process.  A strain gauge force sensor (0–200 N) can record both vertical and frictional 

force and the coefficient of friction (COF) is monitored during the process. 

The system is also equipped with a high-frequency acoustic emission (AE) sensor, 

which can detect the delamination, endpoint, and debris during polishing.  As mentioned 

in chapter 2 the AE analysis is a powerful technology that can be deployed within a wide 
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range of usable applications of non-destructive testing.  The AE sensor works on the 

basis of elasticity of the materials.  All solid materials have certain elasticity and they 

become strained or compressed under external forces and spring back to original form 

(given no plastic deformation) when released.  Higher input forces and, thus, the elastic 

deformation, results in higher elastic energies.  If the elastic limit is exceeded a fracture 

occurs immediately given it is a brittle material, otherwise fracture will occur after a 

given amount of plastic deformation in ductile materials like copper.  If the elastically 

strained material contains a defect, e.g. a welded joint defect, a non- metallic inclusion, 

incompletely welded gas bubble or similar, cracks may occur at heavily stressed spots, 

rapidly relaxing the material by fast dislocation motion.  This rapid release of elastic 

energy is what we call an AE event.  It produces an elastic wave that propagates and can 

be detected by appropriate sensors and analyzed.  The impact at its origin is a wideband 

movement (up to some MHz).  The frequency of AE testing of metallic objects is usually 

between 100 and 300 kHz, typical values for ultrasound.  The acoustic emission sensor 

employed in this tester has a frequency range between 0.5 to 5 KHz.  The AE sensor, in 

conjunction with COF, has been used to detect the delamination, endpoint, and debris 

during polishing. 

The CMP tester can hold a pad up to 15.24 cm diameters.  The upper carriage can 

hold sample wafers up to 40mm X 40mm.  The upper carriage is connected to a vertical 

linear motion system that has a travel length of 150mm and can oscillate on the pad 

during polishing.  

The CMP tester is a testing tool and thus the following assumptions are made 

when different pads, slurries and materials were evaluated; 
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1)  Due to the lack of uniformity on the surface of the coupon, an average of the 

material removal rate measured at different points from the center to the edge 

of each BPM coupon and was assumed to be the MRR. 

2) During the in-situ detection of MRR using COF the non uniformity of the 

sample surface brought about gradual tapering of the signals even for blanket 

samples. The end point was assumed to have occurred when more than 70 % 

of the material was removed from the surface and further material removal 

brought significant change in the COF signals.  

Further details of the CMP benchtop tester are found in previous literature on the tester 

[126, 127]. 

3.3.4.1 Experimental Procedure:  Process Parameters  

 

Influence of machine parameters such as down force, relative velocity, coefficient 

of friction (COF) and material removal rate (MRR) were observed.  Based on previous 

studies and models of the CMP process, relative velocity and pressure were chosen as the 

influential parameters to vary for the BPM copper CMP [78, 79, 84, 85, 96, 104, 128, 

129].  The initial downward force applied to wafer from the CETR tester is calculated 

using this equation (3.6):  

 

        F= (P*A)/2.2046                                                     (3.6) 

 

where P is the pressure in Psi and A is the estimated contact the area (in²).  The forces 

applied to the wafers ranged from 1-6 pounds per square inch (Psi).  After polishing the 

wafers are cleaned with acetone and blown dry with compressed nitrogen, to avoid any 

surface deposition from the slurry or oxidation of the newly polished copper surfaces 
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(although the oxidation is inevitable to avoid, reducing the oxidation is the closest 

solution for wear, surface quality, and mechanical property measurements).  Table 3.4 

shows the variation in process parameters for the polishing experiments.  

 

Table 3. 4 Process parameters for CETR tests 

# Process Parameter Metric 

1. Pressure 1, 3, 6 Psi 

2. Platen speed 50-300 RPM *increments of 50 RPMs 

3. Wafer carrier speed 50-300 RPM *increments of 50 RPMs 

4. Slider movement 3 mm/s 

5. Slurry flow rate 75 ml/min 

6. Time 120 sec 

7. Pad Rodel IC 1000 Suba IV k-groove 

8. Specimen MIT 854 BPM 1‖x 1‖ copper 

coupons 

 

The polishing experiments were run for 120 seconds and all experiments were 

repeated five times with a statistical average shown in the results section. 

3.3.4.2 Experimental Procedure:  Material Removal Rate  

 

 The initial thickness of the Cu films were obtained using three different methods 

to ensure that the beginning thickness was accurate as shown in table 3.1.  Initially the 

copper mask was etched using hydrofluoric acid to the silicon substrate, and then the step 

edge was measured using a Dektak 150 stylus profilmentor by Veeco.  A second 
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measurement was taken by a Cascade 4 Point Probe Station, with a Keithley current 

source, and a HP digital multimeter shown in figure 3.15.  

 

Figure 3. 15 Four point probe station 

 

The second measurement captured the sheet resistance at six fixed points on the 

diced wafer in the specified patterned region.  Equation 3.7 contains the sheet resistance 

equation used for calculation of the sample. 

 

                                                            
s

m

s
I

V

t
R 53.4                                                (3.7) 

 

where Rs is the sheet resistance, ρ is the resistivity, t is this thickness, Vm is the voltage, 

and Is is the current. The value of 4.53 is a constant that is equal to the pi divided by the 

logarithm of 2.  This value is derived from equation 3.8 which is the resistivity of thin 

film layers [130].    
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The bulk resistivity of copper is 1.68e-6 ohm-cm and knowing this resistivity the 

thickness can be solved for given that all other parameters are inputs.  During 

experimentation the average of nine tests is taken for the final thickness measurement 

with the error shown accordingly in the graphs.  The final thickness measurements of the 

samples were further verified by a Quanta 200 3D dual beam focused ion beam (FIB) by 

FEI.  The procedures for these measurements are detailed below in the transmission 

electron microscopy (TEM) section.  The FIB measurements were taken after individual 

sections to be analyzed by the TEM were ―lifted out‖ of the sample.  It should also be 

noted that in later chapters the use of the COF for EPD is used to determine the final 

MRR and by knowing the initial thickness a removal rate can be calculated.  

3.3.4.3 Transmission Electron Microscopy (TEM) 

 

With the decrease in feature size below the sub-micron range, transmission 

electron microscopy (TEM) has become the most important tool for detailed physical 

failure analysis and material analysis.  The focus ion beam (FIB) has become a necessary 

tool utilized for TEM sample preparation.  The samples were prepared using the FIB 

―lift-out‖ technique detailed by Overwijk. [131].  The technique involves generally no 

sample preparation as long as sample sizes are able to fit inside the FIB specimen 

chamber.  A metal line of platinum is deposited over the area of interest and a large stair-

step FIB trench is cut on one side of the area of interest and a rectangular FIB trench is 

cut on the other side of the area of interest.  Prior to final thinning the sample is tilted to 

>45° and then the bottom, left side, and a portion of the right side of the are cut free 

[132].  Then the sample is tilted back to its starting position and the specimen is thinned 

to electron transparency. Since the specimen is to be used for high resolution electron 
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microscopy (HREM), a final FIB cut is performed 1–2° with respect to the plane of the 

specimen surface, therefore the thinnest portion of the specimen lies in the area of interest 

[132].  The finalized sample is imaged using a Technai F20 TEM by FEI Inc, with an 

accelerating voltage of 200kV.  Results from the TEM imaging are discussed in 

subsequent sections of this chapter. 

3.3.4.4 Consumables 

 

A six-inch circular portion of a Rodel, Inc IC 1000 Suba IV A-4 perforated pad 

was used for polishing.  Table 3.5 contains the properties of the pad tested for the 

experiments. 

Table 3. 5 CMP pad material properties 

Rodel IC 1000 Suba IV A-4 Parameter Value:  English (metric) 

Diameter 32‖  (81 cm) 

Specific gravity 630-800 (kg/cm
3
) 

Thickness 50 mils (1270µm) 

Hardness 57 (Shore D) 

Compressibility 2.25% 

  

The pad is conditioned for 20 minutes followed by 1 minute of polishing on a 

dummy sample, then another 20 minutes of conditioning, followed by another 1 minute 

of polishing on a dummy sample, and then the final 10 minutes of conditioning of the pad 

followed by the actual experiments with copper slurry.  The conditioning of the pad is 

used to increase the roughness of the pad to help in the material removal process and 

reduce glazing of the pad.  The fundamentals of the conditioning process are further 
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explained in chapter 4.  During conditioning and dummy polishing deionized (DI) water 

is used as the lubricant instead of the slurry mixture used in the actual experiments.  

 The slurry used in these experiments was Cabot iCue 5001which contains 500 nm 

precipitated alumina oxide abrasive nanoparticles.  Nine hundred milliliters of Cabot 

slurry was combined with 100ml of hydrogen peroxide during polishing of the BPM.  A 

magnetic stirrer was utilized to disperse the mixture and particles in the slurry.  The 

abrasive particles are amorphous in nature and the hardness of the alumina oxide particles 

can lead to scratches on the surface as discussed in chapter 2.  The Cabot iCue slurry is 

developed for copper CMP and has a low selectivity and etch rate on the silicon dioxide 

dielectric layer.  Due to priority reasons the distribution, shape, and mechanical 

properties of the abrasive silica particles are not disclosed but the pH of the slurry is 

maintained at 7.64.  Further details on the slurry as a consumable and their interactions 

during CMP are detailed in chapter 5. 

3.3.4.5 Optimization of CMP Experimentation 

 

A statistical analysis of variance (ANOVA) was done with two factors and three 

levels as the experimental design.  The factors analyzed are the pressure and velocity to 

test the effect these factors had on the MRR during CMP.  Table 3.6 described below 

contains the specifications for polishing of the wafer.   

Table 3. 6 Statistical ANOVA table 

# Factor Level 

1. Pressure 1, 3, 6 Psi 

2. Relative Velocity 0.2, 0.8, 1.2 m/s 

3. Time 120 seconds 
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Each test was completed three times giving a total of 27 total experiments and 

values were averaged when completing the ANOVA.  The levels chosen were based on 

IC CMP for the CMP benchtop tester in order to compare the values to previously 

attained values blanket materials.  These factors were chosen to optimize the CMP 

process for BPM fabrication.   

3.4 Results and Discussion 

 

 The results from benchmark experimentation on CMP of BPM are detailed below.  

Analysis on the MRR, lubrication regime, mechanical properties, and a statistical analysis 

is presented below.    

3.4.1 CMP of the Patterned Media Surface 

 

 Results of the CMP of the BPM surface are detailed below.  The interactions of 

the output parameters are discussed in the conclusion.  Results have an indication on the 

feasibility of CMP as a fabrication technique. 

3.4.1.1 MRR and Pressure 

 

As the pressure is increased and the velocities of pad and carrier are held constant 

the MRR is also increased, shown in figure 3.16, and this directly correlates to the 

material removal from Preston‘s equation.   
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Figure 3. 16 Pressure vs MRR for BPM CMP 

 

As the pressure increases the number of asperities from the pad and abrasive 

particles that come into contact with the wafer surface asperities increases, causing an 

increase in the MRR.  Consequently the increase in pad to wafer surface contact pushes 

the polishing regime closer to the boundary lubrication regime which is characterized by 

high MRR and high surface defects due to lack of a lubricating fluid during polishing.    

It should be noted that similar tests done on blanket copper wafers at 3 Psi and 1.1 m/s 

relative velocity yields a MRR from 135 nm/min to 200 nm/min which is on the higher 

end of the BPM CMP MRR.  

3.4.1.2 MRR and Velocity 

 

Similar to section 3.4.1.1 the pressure values are held constant and the velocities 

are increased to determine the effect of velocity change on BPM CMP.  Figure 3.17 

shows that as the velocity is increased and pressure is held constant the MRR are also 

increased.   
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Figure 3. 17 MRR vs. relative velocity 

 

The increase in velocity introduces more abrasive particles from the slurry into 

contact with the wafer surfaces and pad asperities leading to a higher removal rate [84].  

The increase in the velocity does not have the large increases in MRR as with the 

pressure increase and this can be attributed to the fact that as the velocity increase the 

number of particles interacting with surface will plateau depending on the concentration 

of particles in the slurry and further increase in the speed yields little to no effect on the 

MRR.  It should be noted that the both the 1 Psi and 6 Psi curves are linear in fashion 

with respect to the MRR, while there is a decrease in the MRR at high speeds of the 3 Psi 

polish.  

It is also interesting to note that for the relative velocity plots the linear trend 

approximation for Preston‘s equation holds close to the actual MRR, but these 

estimations are not exact.  The relationship is not a linear relationship and this fact has 

been determined by several other authors [56, 83, 133-135].   
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Quantitative results indicate that the pressure increase has a more pivotal impact 

on the MRR than the velocity based on the increases in the values for the MRR from 

figures 3.16 and 3.17. 

3.4.1.3 Stribeck Curve  

 

The COF at the interface is a function of various factors such as surface 

topography of the pad and wafer and the machine process parameters.  The Stribeck 

curve can be calculated by first calculating the Sommerfeld number shown in equation 

2.2 and reproduced below; 

 

                                                           
p

U
So                                                  (2.2) 

 

In the above equation μ is the slurry viscosity, U is the relative pad-wafer average 

linear velocity, p is the applied wafer pressure, and δ is the effective slurry thickness in 

the pad-wafer region.  Determination of U and µ are fairly straightforward as the latter 

can be measured experimentally for a given slurry, while the former depends on tool 

geometry and angular velocities of the wafer and the platen [136]. 

Based on knowledge of the Cabot iCue 5001 slurry the viscosity ranges from 1-3 

cP, and the average value of 2 cP is used for calculation of Sommerfeld number.  This 

number will shift the Sommerfeld number to the left or right based on the other 

parameters but will not affect the overall importance of the regime. 

Previous dual emission laser induced fluorescence (DELIF) experimental results 

by Coppeta and Lu have shown that the slurry film thickness in the pad-wafer region 

ranged from 20 to 40 µm [137, 138].  Li et al. proposed using the surface roughness of 
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the pad to estimate the δ in the Sommerfeld equation as their results indicated a pad 

roughness form 20 to 50 μm [136].  In this study through WYKO surface profiler the pad 

roughness was found to be closer to ~10 μm and will be used as an estimate of the slurry 

thickness.  This approximation resulted in the calculated Sommerfeld number to shift to 

the right or to the left, in the data but had no effect on the trends of the Stribeck curves 

[136].  The film is considered to distribute the pressure and eliminate the effect caused by 

different grooves.  Therefore the wafer pressure is defined as the applied down force 

divided by the wafer area [136].  Figure 3.18 is the Stribeck curve for the polishing 

parameters for experimentation in table 3.4.   

 

 

Figure 3. 18 Stribeck curve 

 

From figure 3.18 it is evident that all three polishing pressures undergo transitions 

into all three lubrication regimes.  All of the process start with the boundary lubrication 

regime in which the fluid carries little or none of the pressure applied. In this regime the 
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pad asperities and the wafer asperities are in direct contact and all of material removal is 

due to mechanical interactions of the pressure and velocity.  Consequently due to the lack 

of slurry lubrication the COF is highest in this regime and the thermal energy dissipated 

in the case must be very high resulting in non uniform and inconsistent material removal.  

All curves then transition to the hydrodynamic or partially lubricated regime, in which 

the pad to wafer contact and the slurry interaction play a role in MRR.  The slurry along 

with the abrasive nanoparticles within slurry interacts with the wafer surface causing 

chemical corrosion and mechanical removal.  This regime has high MRR and low surface 

defects; the longer a process is in this regime the better the results for the output 

parameters.  The final transition occurs at the end of polishing to the fully lubricated 

regime in which the slurry contributes to all of the MRR, because the pad and wafer are 

not in contact.  Polishing in this regime results in smooth surfaces but to increase the 

MRR, the velocities of the pad and wafer must be increased up to a threshold value.   

These regimes from the Stribeck curve are consistent with the calculated Stribeck 

curves from literature but for the BPM wafers the COF values are all larger than standard 

copper CMP [45, 46].  The  blanket copper wafers have a greater decline in the COF over 

the course of polishing and this fact could be due the planarization of the thin film in 

blanket copper CMP, whereas the BPM configuration polishing is not fully planarizing 

the surface but rather a smoothing surface as seen in figure 2.13.  This leads to a fairly 

constant value of the COF during polishing.  The COF also gives a measure of polishing 

intensity at the interface which would result in heat dissipation generation of thermal 

energy from mechanical interaction [126, 139].  Thus, measure of the COF at the 
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interface during CMP gives vital information about the polishing and removal 

mechanism.  Figure 3.19 gives the MRR versus the COF for the three-recorded pressures.   

 

 

Figure 3. 19 MRR vs. COF 

 

 The trend from figure 3.19 indicates that the lower the COF the lower the MRR 

during polishing.  The MRR and COF values indicate that as the pressure is increased the 

MRR and COF are also increased.  Utilizing the fact that the COF can be monitored in-

situ a qualitative model can be developed for the BPM CMP based on these results.  The 

results do not indicate the overall surface quality but the trend followed for material 

removal.  CMP of BPM follows closely to experimentation by Zantye for COF and MRR 

trends done on silicon dioxide and other ILDs [45].    

3.4.2 BPM Pre/Post CMP Mechanical Properties   

 

Table 3.8 below gives the pre and post CMP mechanical properties evolution 

during the CMP process for the increases in pressure.   
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Table 3. 7 Nanoindentation results of BPM copper 

Patterned Copper Sample Elastic Modulus (GPa) Hardness (GPa) 

Unpolished 121.657 3.152 1.249  0.121 

1 Psi 129.828 1.090 1.440 0.058 

3 Psi 135.419 0.752 1.609 0.061 

6 Psi 138.594  1.292 1.962  0.208 

 

Table 3.7 shows the results from the nanocharacterization of the BPM CMP 

experiments.  From the table it is evident that as pressure increases during polishing the 

elastic modulus and the hardness increase as well.  Increase in the mechanical properties 

arises from two possible reasons.  The number of dislocations is increased as the 

abrasives particles permanently deform particles and then are removed due to the velocity 

and removal of the slurry.  As the dislocation density is increased, the surfaces become 

harder to indent and permanently deform.   

Another possible reason is due to the multigranular structure.  Focused ion beam 

(FIB) and TEM images clearly depict several grains within the patterned structure.  

Orientation of these grains plays a role in the hardness due to several crystallographic 

effects.  The critically resolved shear stress (CRSS) required to cause slip in a crystal 

(grain) depends heavily on the orientation of that grain.  Within the multigranular 

structure seen during polishing several orientations exists and as the BPM is polished 

through shearing of the surface the resulting surface will have an orientation different 

from the previous grain.  The new grain orientation along with the dislocation motion to 
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the grain boundaries increases the mechanical properties of the material through work 

hardening.  These enhanced mechanical properties are advantageous for the BPM ability 

to withstand down pressure and shear during CMP.   

3.4.2.1 Slurry Chemistry Characterization 

 

To ensure that the slurry chemistry did not have strengthening effect on the 

copper surfaces, each BPM sample was allowed to sit in the Cabot iCue slurry and 

nanoindentation was done on each sample to determine the effects of the slurry on the 

mechanical properties of the samples.  Table 3.9 shows the results from the 

experimentation. 

 

Table 3. 8 Mechanical properties from the slurry 

BPM Sample Elastic Modulus Hardness (GPa) 

Unpolished 121.657 3.152 1.249  0.121 

5 minutes slurry 120.921±2.758 1.228± 0.221 

30 minutes in slurry 119.241 ± 3.56 1.256± 0.48 

1 hour in slurry 118.441 ± 4.21 1.205± 0.19 

10 hours in slurry 117.021 ± 1.51 1.18± 1.13 

24 hours in slurry 113.231± 1.93 1.17 ± 0.59 

 

 Based on table 3.8, the effect of the slurry alone has as detrimental effect on the 

mechanical properties of the BPM wafer coupons.  The data in table 3.8 is based on nine 

indents averaged from the MTS indenter.  It is evident that the Cabot iCue slurry weakens 

the copper on the silicon substrate and this is beneficial from a commercial aspect to 
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increase the MRR during CMP, but this does not account for the increase in the 

properties seen in table 3.7. 

3.4.2.2 TEM Analysis 

 

Prior to polishing the a TEM image was taken using the Technai F20 TEM  

shown in figure 3.20 shows that the patterned wafers are multi-granular.  The two major 

factors that affect the mechanical properties of a metal are the size of the grains coupled 

with the grain boundaries and grain orientation [140-142]. 

 

 

Figure 3. 20 Initial multigranular cross section of copper BPM 

 

Given that the act of polishing is mechanical work on the metals, the increase in 

mechanical properties is produced by work hardening and plastic deformation of the 

metal.  For copper with large grains (micron size), the plastic yielding occurs by 

generation of dislocations from internal sources.  The increase in stress results from the 

pile-up of dislocations causing the activation of sources in the adjacent grains and the 
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resulting strain hardening arises from the accumulation of dislocations as seen in figure 

3.21[143, 144].   

 

 

Figure 3. 21 Post polish TEM of Cu BPM 

 

The increase in the theoretical shear strength of metals from shearing or 

indentation has been reported in literature and the dislocation motion has been 

documented accordingly [145].  Minor et al, provided evidence of the dislocation motion 

and increase in shear strength as shown in Figure 3.22.   
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Figure 3. 22 Dislocation motion in aluminum [145] 

 

The grain boundaries disrupt the movement of dislocations in a crystal and the 

disruption leads to larger applied forces need to cause the crystal to deform and lead to 

micro-cracks as seen in figure 3.23.   

 

 

Figure 3. 23 Microcrack formations after polishing 

 

The micro-cracks seen below the surface in figure 3.19 was witnessed in all cases 

of polishing in the samples, even at the optimized polishing parameters.  The formation 

of these cracks will cause the PM to lose any data written on it and future research will 
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have to investigate either a means to reduce and remove the cracks or stronger materials 

to circumvent cracking.  

3.4.3 Surface Roughness Characterization  

 

Surface roughness and the overall surface quality play vital roles in the 

performance of the magnetic devices.  It is imperative that the devices have atomically 

smooth surfaces so that the slider and magnetic head does not crash into the data on the 

devices.  Table 3.9 contains the final average surface roughness values after CMP, the 

initial surface roughness, RMS, for the BPM configurations was 352.73 ± 1.24 nm.   

 

Table 3. 9 RMS surface roughness for CMP process parameters 

Relative 

Velocity (m/s) 

1 Psi 3 Psi 6 Psi 

0.2 336.88 ± 1.95 nm 322.34 ± 3.24 nm 339.00 ± 6.96 nm 

0.8 334.04± 0.86 nm 201.00± 0.38 nm 222.42± 4.95 nm 

1.2 304.17 ± 10.98 nm 195.88 ± 0.32 nm 195.57±  2.57 nm 

 

From table 3.9, the polishing parameters for 3 Psi had the least amount of 

standard deviation.  Figures 3.24 contain the initial 3D surface topography taken by the 

Wyko NT 9100 by Veeco, Inc.  Figures 3.25-3.27 contain the final characterization 

images taken by white light interferometry using the VEECO NT-9100 surface profiler 

for the optimum polishing conditions using the polishing parameters from table 3.4.  The 

images for each polish are contained in the appendix of this dissertation but the optimum 

images for each pressure are shown below.     
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Figure 3. 24 Initial surface roughness for BPM prior to polishing 

 

 

 

Figure 3. 25 1 Psi post CMP surface roughness 
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Figure 3. 26 3 Psi post CMP surface roughness 

 

 

 

Figure 3. 27 6 Psi post CMP surface roughness 

 

The final RMS surface roughness, Rq, from the 3 Psi, 1.2 m/s polishing is of 

196.26 nm after polishing 120 seconds.  This median pressure and highest velocity 
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yielded the optimal surface roughness for polishing at 120 seconds using the parameters 

for standard polishing in the IC industry.  It should be noted that the 6 Psi polishing 

parameters had the highest MRR but the surface roughness was contaminated with debris 

from surface scratches and delamination at the edges due to over polishing.  Figure 3.28 

shows the delaminated SEM images after polishing at 6 Psi and 1.2 m/s.   

 

 

Figure 3. 28 Delaminated edge SEM image 

 

After determining optimal machine input parameters for the surface roughness 

and MRR for BPM CMP, a statistical analysis was conducted to determine the 

importance of each parameter.   

3.4.4 Statistical Analysis of Variance (ANOVA) 

 

Table 3.10 contains the results from the ANOVA done on the 3
2 

factorial test 

design on patterned media CMP using an alpha of 0.5.   
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Table 3. 10 ANOVA table for pressure and velocity of BPM CMP 

ANOVA 

SOURCE 

SS Df MS F F-Critical 

A 323210.5 2 161605.2 1141.19 3.354141 

B 8609.056 2 4304.528 30.39682 3.35414 

AB 3984.611 4 996.1528 7.034425 2.727765 

Error 3823.5 27 141.6111   

Total 339627.6 35    

 

Factor A is the pressure and factor B is the velocity, the statistical analysis also 

accounts for the interaction between the two variables (namely the multiplication of AB) 

as a further factor for analysis.  The results indicate that the pressure is the dominant 

factor in the MRR as the experimental results have proven.  The velocity plays a less 

significant role in the MRR and these results were also reported by Tseng et al. [84] 

The results indicate that the interaction of the pressure and velocity plays a 

significant role but is simplified to a linear relationship as reported by [83, 134, 135].  A 

residual versus fitted values graph is show in figure 3.29 to ensure there were no 

compounded errors in the calculations.  
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Figure 3.29 Residuals plot 

 

From figure 3.25 since there is not a ―cone shape‖ the values are taken to be true. 

And the statistical analysis is verified for the process parameters.  Based on the values for 

the inputs of pressure and velocity and the resulting value of the MRR a linear regression 

model was developed as shown in equation 3.9; 

              0.16X  X2 10-4.65E  53.31X1  489.74   Y                       (3.9) 

where Y represents the MRR, and X1 and X2 represent the pressure and the velocity 

respectively.  This equation does not take into the account the slurry chemistry or the 

Preston coefficient and is detailed here as an accompaniment to the statistical analysis.   

3.5 Conclusion and Remarks 
 

 CMP tests were run on copper bit patterned media in magnetic data storage device 

configurations, in order to understand the viability of CMP as the planarization technique 

on the new data storage configuration.  The data on the CMP of BPM copper wafers was 

presented and detailed aspects of the MRR were determined.  The pressure and velocity 
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were optimized to determine the parameters to induce the best surface quality and 

repeatability and the Preston‘s equation for material removal based on pressure and 

velocity was verified through statistical analysis.   

 Results indicate the best surface roughness of 196.26 nm occurs at polishing at 3 

Psi, 1.2 m/s, and for the duration of 120 seconds.  The highest MRR of 320 nm/min 

occurs at the highest pressure of the experiment of 6 Psi, 1.2 m/s, and 120 second 

polishing time.  The values of the MRR for BPM are considerably lower for the same 

process parameters of blanket copper wafers with a percent difference for the low end of 

polishing of 3.11%-40% difference in the overall MRR.  At all three velocities for the 6 

Psi polishing test resulted in delamination of the patterned media from the substrate, 

indicating that this polishing pressure should be avoided.  Polishing at 6 Psi will result in 

failure of the magnetic hard drive to the magnetic read/write head crashing while trying 

to access a grain or from crashing into the delaminated edges of the PM surface. 

The overall low surface roughness and repeatability of the low polishing pressures 

and high velocities indicate that the required atomic surface roughness can be achieved 

on the PM configurations.   

 The mechanical properties were characterized before and after polishing and 

results indicate an increase in mechanical properties with no depreciable change in grain 

size.  The cause for the increase in mechanical properties is linked to work hardening 

through the plastic deformation from the mechanical work done during polishing as 

evidenced through metallurgical studies [145, 146].  TEM analysis shows dislocation 

motion and pile up at grain boundaries further verifying that the metallic copper is 

reaching the theoretical shear strength through the dislocation pile up [145].   
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Optimization based on a statistical analysis, mechanical properties, and metrology 

studies provided results that yield promising initial ramifications on the feasibility of 

using CMP as a planarization technique.  The machine parameters have been optimized 

based for BPM CMP based on IC CMP.  This chapter serves to be the foundation for 

polishing BPM as literature has proven that the machine input parameters provide the 

greatest influence on the output parameters for polishing [42, 59, 84, 85].  

The consumables utilized in the CMP process must next be optimized based on 

the machine input optimization in this chapter.  The next phase characterizes the pads 

used for the BPM CMP process as detailed in figure 2.17.   
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CHAPTER 4:  BIT PATTERNED MATRIX CMP PAD CHARACTERIZATION 

 

 

4.1 Foreword 

 

 A stable and predictable CMP process requires full control of the consumable 

parameters shown in figure 2.17.  Luo argues that based on his particle scale model, the 

micro-scale polishing pad topography, and nano-scale abrasive size distribution in the 

slurry are the two most important parameters for the CMP process (consequently the 

slurry size distribution is covered in chapter 5 of this dissertation) [147].  The polishing 

pad is arguably the most important component of the CMP system and has an economic 

impact of 550 million dollars annually [148].  The pad plays a crucial role in both the 

mechanical and chemical aspects of the polish.  The mechanical properties of the pad will 

determine the polish rates and planarization ability of the process.  The surface of the 

polishing pad, with its pores, grooves, and compressibility play an important role in the 

mechanical removal of the reaction products from the wafer surface [149].  The pad also 

carries the slurry on top of it, executes the polishing action, and transmits the normal and 

shear forces during polishing. At the pad/wafer interface, the slurry acts on the wafer and 

forms a compound with the material that is being polished.  This compound is removed 

when the abrasive particles collide with pad and wafer asperities.  The material removed, 

is then washed away due to the constant slurry flow on the pad.     

This chapter serves to focus on characterization of the pad and pad life in 

comparison to the material removal and resulting surface quality of the BPM wafer 
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surface, based on the optimized parameters from chapter 3, the machine input parameters 

are used for pad characterization as shown in figure 4.1. 

 

 

Figure 4. 1 Pad characterization based on optimized machine input parameters 

 

The objectives for this chapter are: 

1)  Investigate pad wear on BPM CMP   

2) Perform a parametric study of pad wear, pad roughness, COF, MRR, surface 

morphology 

3) Give a qualitative analysis on the pad life, surface characteristics of the wafer, 

pad, and polishing regime  

4) Determine optimal polishing pad for CMP of BPM from three commercially 

available pads. 
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4.2 Introduction:  CMP Pads 

 

 Polishing pads are major consumables affecting the within-wafer and wafer-to-

wafer non-uniformity (WIWNU and WTWNU respectively) in planarization technology.  

WIWNU is where there is non-homogeneity of polishing at different areas of the same 

wafer, and WTWNU occurs when there is non-homogeneity of polishing when one wafer 

is compared to another [150].  Polishing pads are composed of either a matrix of cast 

polyurethane foam with filler material to control hardness or polyurethane impregnated 

felts [42].  The role of the pad is to transport media of slurry to the polishing reaction 

point and to support polishing pressure derived from down force to the wafer [151-154].  

The pad also transfers the shear force of the slurry to the wafer surface and eliminates 

polishing residue from the polishing point to allow new polishing reactions [153].  The 

combination of the many duties of the pad results in the properties and behavior of the 

pads directly affecting the CMP output parameters.  Unfortunately pad fabrication 

technology has not kept pace with the continual progress of device fabrication processes. 

Specific problems include short pad life, inconsistent process results and extreme 

variability within each pad and from pad-to-pad; this requires costly adjustments of the 

CMP system and process parameters [154]. 

4.2.1 Pad Materials 

 

Based on the microstructure, pads can be divided into four categories [155]. Type 

(1) pads typically are polymer impregnated felts.  The microstructure of a pad of Type (2) 

is characterized by non-woven polyester fibers infused with polyurethane. Porometrics 

form the Type (3) pads and pads of this type display a porous layer on a substrate.  Type 

(4) pads are filled polymer sheets and have a closed foam structure with macro pores.  
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For any polishing technique the choice of pad depends on the nature of the material to be 

polished and polishing output requirements [156].  Most commercial polishing pads for 

metal or oxides are of viscoelastic nature and, are mostly of type (1) [93, 157].   

 Polyurethanes are  condensation polymers prepared by reaction of isocyanate and 

a polyol in the presence of a catalyst and a foaming agent [158].  The intrinsic polymer 

properties, like glass transition temperature (Tg) and mechanical properties like elastic 

modulus, compressive strength, shear modulus etc., are strongly dependent on the 

molecular structure of the isocyanate and polyols.  A large selection of commercially 

available isocyanates and polyol combinations, along with very versatile chemistry of 

urethanes, makes it possible to synthesize polymers with specifically tailored properties 

[159].  Synthesis of the pads is not specifically covered in this dissertation but can be 

found in literature review [159-163].   

4.2.2 Effect of Pad Geometry  

 

 The polishing process involves, intimate contact between the asperities on the 

wafer surface and the pad material, in the presence of slurry.  The mechanical properties 

of both surfaces play a significant role in the final planarity and polishing rate.  The wafer 

surface is hard and brittle, while pads tend to be made of relatively softer materials for 

optimal polishing. 

4.2.2.1 Effect of Pores 

 

 The polyurethane pad consists of pores within the pad. These pores can be either 

closed or open pore systems. In either case the pores on the pad surface aid in slurry 

transport, to all parts of the wafer surface thereby ensuring chemical erosion.  The cell 

walls of the foam mechanically remove the reaction products from the wafer surface and 
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the pores of the pad enable transport of the reaction products from the interior of the 

wafer surface to outside as seen in figure 4.2 [159]. 

 

 

Figure 4. 2 Schematic of CMP polyurethane pad pores [159] 

 

The pores on the pad surface enhance both the chemical and mechanical aspects 

of the process [159].  For a pad with an open pore structure, increasing the number of 

pores increases the cell wall scraping and henceforth the mechanical abrasion.  

Alternatively the closed pad structure is not interconnected to the wafer surface and 

therefore does not aid in the mechanical abrasion.  The closed pore structures (pores that 

have a dead end) cannot aid slurry transport and/or product removal, but assists in 

supporting the pressure applied to the pad for stability.  It is important to know the total 

pore volume as well as the fraction of open cells.  The pad design should involve 

optimization of both to aid in support of the pad structure, the slurry movement through 

the pad, and mechanical abrasion [159].   

4.2.2.2 Effect of Grooves 

 

 The grooves or perforations on the polishing pads have a significant impact on the 

polishing mechanism and outcome parameters [164, 165].  Grooves on the pad allow for 

effective slurry flow under the wafer surface and thus are very crucial for an effective 
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CMP process.  Phillipossian et al. carried out fundamental tribological studies on CMP of 

pads with different groove types at various slurry abrasive concentrations [166].  The 

COF data was fitted as a function of Sommerfeld number and a tribological mechanism 

indicator ―β‖ was developed to index and describe the change in COF.  Stribeck curves 

were generated using the friction data for a variety of groove and pad types. From the 

shapes of individual curves, the authors hypothesized that some of the pads polished in 

partial lubrication regime and some in boundary lubrication at lower Sommerfeld 

numbers and transitioned to partial lubrication regimes.  Consistent removal rates and 

uniformity were observed as long as the polishing regime is in boundary lubrication 

regime, although polishing in the boundary lubrication regime is aggressive and may 

induce delamination of the surface. 

4.3 Pad Characterization  

 

There is ongoing research to investigate the dependence of various pad material 

properties on the CMP process.  Various researchers have focused on the macro effect of 

the wafer shape, mechanical properties, and polishing pad profile on the MRR, and 

findings include that there is a drop in the MRR as a function of time due to varying the 

mechanical response under conditions of critical shear [167].  During the CMP process 

the surface of the CMP pad gets loaded with debris from the polishing operation, which 

leads to ―glazing‖ on the surface.  This means that there are no asperities to hold the 

abrasive grits, which leads to inefficient polishing and possible micro-scratching on the 

surface wafer.  The phenomenon of pad ―glazing‖ is also attributed to the mechanical 

response under conditions of shear.  Other researchers have focused on the wafer 

planarity and determined that the wafer planarity is a function of pad stiffness, which is 
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determined by the elastic properties of the pad material [167, 168].  As previously stated 

it has been shown that the pad may be directly responsible for several process defects like 

WIWNU and WTWNU and the techniques used for characterization of the CMP 

polishing pads such as, dynamic mechanical analysis (DMA) are destructive and 

therefore do not yield ex-situ information on the pads which requires a new and novel 

way to analyze the pad characteristics, properties, and life.  This chapter serves on 

qualitative characterization of pad properties through a novel nondestructive technique 

and their effect on the output parameters.  Secondly this research aims to predict pad life 

for BPM configurations to reduce waste and increase the sustainability of the pads.     

4.3.1 Ultrasound Transmission 

 

 A novel non destructive ultrasound transmission system (UTS) developed at USF 

has been effectively used for evaluation of the CMP pads [169] . This technique works on 

the principle of ultrasound permeability through absorbing viscoelastic medium.  The 

transmitted ultrasound signal is used to determine  how the material properties of the pad 

vary over its geometry [170].  By sending an ultrasonic wave through the pad and 

measuring the change in transmitted signal at different spots, one can create a UTS map 

of the underlying pad structure.  The UTS amplitude can be monitored as a function of 

time, height above pad and depth below its surface application of compression at 

different transmitted frequencies [170].  The regions of polishing pad having variations in 

specific gravity transmit different amplitudes of UTS at a same frequency.  The 

amplitude of the ultrasound permeability with in a pad obtained as a result of UTS is 

normalized to against the average UTS amplitude to estimate the comparative variations 

in specific gravity in the different regions of the same polishing pad.  The output of the 
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measurement is a Doppler diagram in which different colors correspond to different 

amplitudes of UTS within the pad.  This picture may be correlated with the pad life and 

performance in order to predict these variables.  This could increase yield by reducing the 

number of rejected wafers as the pad ages prematurely or lengthen production time by 

indicating which pads have more desirable properties. 

The UTS system developed at the Center for Microelectronics Research (U. South 

Florida) is comprised of two key elements; a resonance circular piezoelectric transducer 

as an emitter of acoustic vibrations of selected amplitude and frequency, and an acoustic 

probe as a receiver of ultrasonic vibrations.  A schematic diagram for the UTS system is 

shown in Figure 4.3 with the transducer and acoustic probe labeled respectively.   

 

 

Figure 4. 3 UTS schematic for CMP pads [138] 

 

4.3.2 Surface Characterization    

 

 The surface morphology of the pads was characterized using a JEOL JSM6490 

scanning electron microscope (SEM) shown in figure 4.4.    

(1)

(2)
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Figure 4. 4 Jeol JSM6490 SEM surface morphology tool 

  

The SEM supports ultrastructural analyses of surfaces, 3D organization, and has a 

3.0 nm resolution.  Prior to SEM, the polyurethane pads were coated with a thin layer, 

~10 nm, of gold using the HUMMER X sputtering system at the Nanomaterials and 

Research Engineering Center (NREC) at the University of South Florida (USF).  The 

SEM is used to investigate the surface morphology, cross section of the pads, and the 

effect of polishing on the pores and grooves of the pads. 

4.3.3 Wafer and Pad Surface Roughness 

 

 As detailed in chapter 3 section 3.3, the WYKO NT9100 surface profiler is used 

to determine the surface profile roughness in three dimensions for the pad surfaces and 

the BPM wafer surfaces detailed in chapter 3 section 3.3.1.  Knowledge of the resulting 

roughness parameters wafer will lead to conclusions about how the wear life of the pads 

affects the overall surface roughness of each wafer.  Optimization of this parameter can 

lead to predetermination of unusable pads which can reduce WTWNU thereby decreasing 

waste.    
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During polishing pad roughness is expected to decrease along with the MRR 

during polishing.  The removal of the pores and grooves significantly reduces the ability 

of the pad to remove material and a prediction of the pad life is therefore vital for 

sustainability.  The decrease in the roughness of the pad is detailed by the WYKO 

NT9100.  A statistical WTWNU measurement is calculated by dividing the standard 

deviation of the wafer surface roughness by the average surface roughness of each polish.  

This value will indicate how repeatable the polish parameters are for each pad and polish 

set.   

4.3.4 Ex- Situ and In-Situ CMP Pad Characteristics 

 

 As described in chapter 3 section 3.3.4 the CETR benchtop tester allows for in-

situ monitoring of the forces applied for polishing.  The Fx, Fz forces are utilized to 

determine the COF during polishing of all pads and wafers.  Knowledge of the COF and 

the polishing parameters along with the pad roughness allows for calculation of the 

Sommerfeld number during pad wear.  This calculation allows for elucidation on the 

lubrication regime and thereby the polishing mechanism during the CMP process.   

4.3.5 Material Removal  

 

 The material removal on the BPM copper wafers was determined using the 

technique described in chapter 3 section 3.3.4.2.  The four point probe was used to 

determine the thickness of the wafers before and after polishing and this change over time 

was deemed the material removal rate.  A second method was also used when the BPM 

wafers were polished to the silicon substrate.  Figure 4.5 shows the initial thickness 

measurement done by the FIB machine described in chapter 3. 
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Figure 4. 5 FIB image of initial thickness of BPM 

 

By knowing the initial thickness of 1.02 μm from the wafer substrate to the top 

level of the BPM the amount of time used to polish to the substrate can also be used to 

determine the MRR.   

4.4 Experimental Set Up 

 

 Details on the experimental set up for characterization of the CMP pads are 

described below.  All experimentation was done on a statistical analysis with testing done 

a minimum of five times for each pad and experiment.   

4.4.1 CMP Pads 

 

 Three different CMP pads were tested for experimentation.  These commercial 

pads are all utilized in either copper or other metal polishing.  The MRR and pad wear is 

characterized by the techniques mentioned in section 4.2 of this dissertation.  Details of 

each individual pad are shown in table 4.1 (note k-grooves are concentric pores).  
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Table 4. 1 CMP pad characteristics 

CMP 

Pad 

Type 

Diameter Specific 

Gravity 

Thickness Hardness Compress-

ibility 

Groove 

type 

(1)  

Rodel- 

dual 

layer IC 

1000 

81 cm 630-800 

(kg/cm
3
) 

1270μm 55-59 

shore D 

2.25% k-

groove 

(2)  

Rodel 

dual 

layer IC 

1400 

Suba V 

81 cm 0.75g/cm
3
 1270μm 57 shore 

D 

0.7-6.6% k-

groove 

(3)  RD-

2003 

matrix 

foam 

57.15 cm n/a ~2500 μm ~10 shore 

D 

n/a xy-

groove 

 

 It should also be noted that discussions of the pads will be noted by the numerical 

value assigned in table 4.1 (e.g.  Rodel IC 1000 will be referred to as pad (1), etc).  The 

shore-D value of pads (1) and pad (2) are much greater than pad (3) for the same scale.  

The shore A value of hardness was converted to shore D value based on literature [171].   

Prior to polishing experiments all commercial pads had to be conditioned for 

polishing.  Pad conditioning is an important process to restore the pad properties that 

deteriorate over time from stagnant pads.  The surface interactions involved in the 

process of polishing are influenced by the pad texture resulting from conditioning.  The 

process of conditioning is used to: 

 1)  Maintain the roughness of the pad and promote effective slurry distribution  

 2)  Remove unwanted products after polishing (glazing).  
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 Various pad conditioning methods have been used to improve the pad properties 

and stabilize the removal rates.  The most effective method found was using diamond as 

the abrasive material [149].  The properties of the conditioner such as diamond density 

and diamond mounting play a major role.  The other input variables for the conditioning 

process include parameters such as the conditioning down force and relative speed of 

rotation (rpm) of the pad platen and the conditioner.  The process of conditioning can be 

quantified in terms of MRR, pad roughness, and wear of pad.  It has been found that a 

pad conditioned before the first polished wafer doubled the removal rate compared to the 

unconditioned pads.  Conditioning maintains the removal rate by maintaining the asperity 

height and density on the pad surface.  Uneven pad wear results in uneven distribution of 

the pressure affecting the planarization uniformity and removal rate.  

During the process of conditioning, the conditioner disk rotates about its axis and 

simultaneously moves linearly towards and away from the center of the pad for a uniform 

conditioning of the pad surface.  All pads were conditioned with TBW grid-abrade 2µ 

diamond pad conditioners, for 20 minutes followed by 1 minute of polishing on a dummy 

sample, then another 20 minutes of conditioning, followed by another 1 minute of 

polishing on a dummy sample, then the final 10 minutes of conditioning of the pad 

followed by the actual experiments with Cabot iCue 5001 copper slurry (details of this 

slurry are in chapter 3 section 3.3.4.4). 

4.4.2 Ultrasound Transmission Testing System (UTS) 

 

The UTS system consists of a flat square table that can accommodate polishing 

pads as big as 32‖ in diameter.  The center of the table has a circular hole that allows the 

two screws that holds the pad to pass through.  One side of the table has a slot which 
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enables the transverse movement of a 3‖ Valpey Fisher piezoceramic transducer along 

the radial direction of the polishing pad.  The transducer has a hole in the center and has 

trenches in the sides which help in generation of the vacuum which is used to hold the 

pad on the surface during UTS measurement.  The piezoceramic transducer emits 

resonance ultrasound vibrations at 26 KHz (first resonant frequency of the piezoceramic 

transducer), while a 7 mm diameter quartz rod or a pinducer housed in aluminum casing 

aligned directly above the transducer acts as the receiver.  The received ultrasound 

frequency is then converted in to electrical energy and the raw output is seen on the 

oscilloscope.  The signal from the probe and reference input are both sent to a lock-in 

amplifier which records the amplitude of the received signal at the same frequency as the 

emitted signal.  Different sections of the polishing pad are scanned be rotating the pad 

using the mounting screws by a step motor with 2 degrees angular steps, and moving the 

emitting piezoceramic transducer and the aligned receiver with another step motor at 

7mm radial steps with help of a threaded spindle and screw.  There is a provision for 

vertical movement of the receiving pinducer with the help of a vertically positioned 

spindle and screw.   

The measurements are taken at a distance of 100 µm below the pad surface to 

eliminate the presence of possible ―air pockets‖.  Due to the viscoelastic nature of the 

cross linked polymer material of the polishing pad, all measurements taken are ―curve 

fitted‖ taking the effect of measurement stress and temperature on the material into 

consideration.  The details of the UTS set up, measurement techniques, characterization 

procedures and operation have already been published in literature [169, 170].  The UTS 

experiments were performed on the ―as received‖ polishing pad with the plastic release 
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liner below it.  It is assumed that the bottom PSA and the plastic liner are uniform and 

will have a similar effect on the ultrasound transmission.  These effects could then be 

filtered out when the entire data is normalized against the mean UTS.  The areas of 

interest (e.g., showing the highest or lowest ultrasound transmission over the entire pad 

was designated as ―high transmission‖ or ‗HT‘, while the lowest ultrasound transmissions 

were designated as ―low transmission‖ or ‗LT‘).  These areas were imaged under high 

magnification in the SEM to look at the surface characteristics of the pads.   

4.4.3 CETR CMP Polishing 

 

 In order to fully understand and characterize the pad, the process machine input 

parameters are kept constant during polishes of the pad.  The input parameters are based 

on the optimized data from chapter 3.  Table 4.2 contains the process input parameters for 

pad characterization.   

Table 4. 2 Process parameters for pad characterization polishing 

# Parameter Conditions 

1. Pressure applied 2 Psi 

2. Platen rotation 200 RPM 

3. Carrier rotation 200 RPM 

4. Slider movement 3 mm/s 

5. Slurry flow rate 75 mL/min 

6. Time 120 Seconds 

7. Pad Varying 

8. Specimen MIT 854 BPM 1‖x 1‖ copper coupons 
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The pads undergo a design of experiments that consists of: 

1) Ultrasound testing of the pad at each polish 

2) SEM of the pads HT and LT sections based on the UTS output for surface 

morphology 

3) If needed the pads are conditioned and steps (1) and (2) are repeated 

4) The pad then polish the specimen using the process parameter in table 4.2 

5) Steps 1- 4 are repeated for each pad up ~ 100 polishes or 200 minutes. 

This process described above begins with the as received pads and completed 

after all polishes on the BPM are completed.  For benchmarking purposes the tests are 

run until a) the BPM is fully removed from the silicon substrate or b) the pad life has 

been exceeded without conditioning (e.g., the pad is visibility wore or the thickness is 

half of the initial thickness of the pads based on micrometer readings) [42, 168, 172]. 

4.5 Results and Discussion  

 

 For each polish and pad including the conditioning of the pads, the average COF, 

MRR, wafer surface roughness, and pad surface roughness are recorded at 20 minute 

intervals.  Wyko surface profile images of the wafer and pad surface roughness, 2-D 

profile, surface data including any scratches or delamination, a histogram of the height 

distribution, and a 3-D image were recorded for all polishes, this data is presented in this 

dissertation for pad (2), the images for the other pads is referenced in the appendix of this 

dissertation.  A table of the graphical values is shown in the conclusions section.    

4.5.1 COF and Pad Polishing 

 

 The importance of the COF during all polishing process was detailed in chapter 3 

and verified by literature [73].  During characterization of the pad, the COF helps to 
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determine the polishing regime, as well as gives an indication of the MRR, and pad life 

for each of the pads tested.   

4.5.1.1 Stribeck Curve 

 

 The Stribeck curves were calculated for the three pads for values of the COF from 

10 polishes to 100 polishes (20 minutes to 200 minutes).  The COF was monitored in-situ 

and the average value was taken for calculation.  The Sommerfeld number was calculated 

using equation 2.2 and the input parameters from table 4.2, along with using the Cabot 

Microelectronics value for the viscosity of the slurry and a slurry film thickness 

approximation based on the pad roughness.  The Stribeck curve is plotted in figure 4.6 for 

changes pad roughness during polishing to locate the polishing regime.   

 

 

Figure 4. 6 Stribeck curve for pad polishes 

 

The lubrication regimes and characteristics for each regime during polishing were 

covered in chapter 2.  Based on figure 4.6, it can be seen that pad (1) operated 

predominately in the fully lubricated regime; and this regime has the lowest MRR along 
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with the least amount of surface defects.  Pad (2) polished in the partial lubrication 

regime, and this regime‘s properties designate it as the most preeminent for CMP because 

it allows for high MRR along with low surface defects.  Pad (3) borders the boundary 

lubrication regime as well as the partial lubrication regime.  The boundary lubrication 

regime is good for the material removal rate but because of the two body abrasion has 

high surface defects.  It should be noted that for BPM the least amount of surface defects 

does not equate to the lowest RMS surface roughness.  This is due to the face that the 

patterned surface is only planarized for each high asperity leaving the differential 

between the remaining asperity heights and valleys high and therefore leaving the root 

mean square surface roughness high.   

4.5.1.2 COF and the MRR   

 

 A model between the COF and the MRR for composite non heterogeneous 

materials has not been developed due to the changes in pads, material properties, process 

parameters, and slurries (which includes chemistries and abrasive particles).  During 

polishing a correlation was investigated to find a relationship that can be used as a 

parameter to optimize the MRR and COF.  Figure 4.7 has the MRR versus the COF data.   
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Figure 4. 7 MRR vs COF for CMP of BPM pads 

 

Although a predicting model cannot be drawn from figure 4.6, there does exist a 

relationship between the COF and the MRR.  The higher the COF the greater the MRR 

for all three pads, regardless of layering, groove type, or polishing parameters.  This 

relationship could be described by the action of mechanical polishing during CMP.  As 

the high asperities come into contact with the pad there is two-body abrasion that happens 

and during this interaction between the pad/wafer surfaces the COF is highest.   

 Alternatively, the three body abrasion system inherently cannot have a value as 

high for COF as the two body abrasion due to the lubricating fluid as a medium.  The 

regime with the highest COF would be boundary lubrication and this regime has the 

highest MRR while also producing the greatest surface defects.  This fact is further 

proven by the high material removal during polishing without slurry and the higher COF 

value, the lack of lubrication shows that the boundary lubrication regime dominates with 
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high material removal and high COF, but his regime has the highest amount of surface 

defects. 

4.5.1.3 COF and Polish Time 

 

 The COF is a direct corollary to the MRR during polishing and in-situ 

measurements of the COF during polishing lends to predictable determination of the 

MRR during polishing.  Figure 4.8 details the COF versus polish time for the pads.  

 

 

Figure 4. 8  Polish time versus COF for BPM CMP pads 

 

 The initial value for the COF for all three pads is roughly 0.4 based on figure 4.8.  

All pads are still in the break-in portion of polishing and no difference in COF is 

appreciable (although the MRR is different for all pads).  After 20 minutes of polishing 

all pads exhibit an increase in the COF and this corresponds to increase in the MRR 

during polishing for all pads seen in section 4.5.2.1.  After break-in for pad (1) the 

decrease in the COF remains study during polishing for 200 min.  This correlates to a 
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steady and repeatable polishing regime for pad (1).  Pad (2) has another COF increase in 

polishing between 40 and 50 polishes, due to introduction of a new wafer coupon for 

polishing.  Pad (2) then has the same decrease in COF as seen in pad (1) only shifted for 

higher COF values.  The COF values for pad (3) follow the same pattern as the other two 

pads for the but as the pad deteriorates there is no relationship to be determined for COF 

and polish time for pad (3), and the introduction of pad particles into the wafer/pad 

interface causes anomalies in the COF values. 

4.5.1.4 BPM Surface Roughness and COF 

 

The ability to determine the output parameters by monitoring in-situ parameters is 

paramount for BPM CMP.  It has been shown the COF is an indicator of several process 

parameters such as the MRR and lubrication regime.  Figure 4.9 contains the plot of the 

BPM surface roughness versus the COF.   

 

Figure 4. 9 BPM wafer roughness vs. COF 
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Based on figure 4.9, as the COF is decreased the wafer surface roughness is also 

decreased for pad (1) and pad (2).  As the pads polish the surface the number of 

contacting asperities becomes worn and the contact area is decreased.  As the contact area 

is decreased the COF decreases and the worn surfaces become smoother.  The trend does 

not hold for pad (3) and again this is linked to the deterioration of the pad.  Pad (1) has 

the lowest COF values and the gradual increase in polish time results in a lower COF, 

and thereby wafers roughness.  Pad (2) follows this same trend but broken into two 

separate wafer coupons.  The consistently higher values of COF seen from pad (3) arise 

from the abraded pad particles becoming trapped in the wafer/surface interface instead of 

being removed by the angular velocity.  These particles lead to a stagnant value COF 

during polish time. 

4.5.2 Polish Time Metrics 

 

 The amount of time required to polish the BPM to atomic roughness based on IC 

CMP elucidates the overall efficiency of the process.  Pad characterization will serve to 

dictate the output parameters during polishing.  The data reported in this chapter for the 

pads is based on only initial conditioning of the pad.  Standard CMP practices 

reconditions the pads throughout the process cycle, but for benchmarking purposes the 

pad is conditioned only that the onset of utilization. 

4.5.2.1 Material Removal  

 

The CMP process is employed to remove unwanted material from surfaces to 

ensure local and global planarity during polishing.  The MRR is plotted versus the polish 

time in figure 4.10.  
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Figure 4. 10 MRR vs. polish time 

 

From figure 4.10, the polish rate decreases with time for polishing of BPM.  

Based on the Stribeck curve, pad (1) operated in the fully lubricated regime which was 

distinguished by low material removal but extremely smooth resultant surfaces.   

Although lower MRR than pad (2), pad (1) showed a linear decrease in MRR over the 

200 minute polish time.  Pad (2), which operated in the partial lubrication regime, had the 

highest MRR of the three pads.  It should be noted that pad (2) polishes two different 

wafer coupons; the first coupon reached the atomic surface roughness within 75 minutes 

of polishing and was subsequently replaced with a new coupon for pad (2) to polish.  Pad 

(3) operated on the border of the boundary lubrication regime (wafer to pad contact) 

rapidly deteriorates due to the low Shore hardness value of the pad and possibly the 

groove pattern and after 100 minutes of polishing the pad no longer removes appreciable 

material.   
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4.5.2.2 BPM Surface Roughness 

 

 The second overall goal for CMP is to polish surface to an atomic smoothness. 

Figure 4.11 contains the resulting BPM surface roughness versus polish time for the pads 

tested. 

 

 

Figure 4. 11 BPM surface roughness vs. polish time 

 

From figure 4.11, as polish time increases the BPM surface roughness decreases.  

This is expected and follows the trend from figure 4.9 in which the MRR rate is initially 

very high and as the BPM becomes planarized the MRR decreases as there is less 

material to remove.  Pad (1) takes the longest time to polish the wafer to atomically 

smooth surfaces requiring at nearly 200 minutes.  Pad (2) completed polishing to the 

required 10 nm surface roughness in roughly 75 minutes, after which a second coupon 
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roughly 125 nm, far below the initialized value of 352 nm.  Pad (3) was unable to polish 

the surfaces below 200 nm roughness and as mentioned previously deteriorated rapidly 

during polishing. 

4.5.2.3 Pad Roughness  

 

 The relation of the pad roughness to the resulting surface roughness provides 

valuable data into the regime and how the pad is actually polishing the material.  The pad 

roughness will ultimately determine how smooth the BPM surface will be due to the 

pad/wafer interface asperities dominating the MRR as shown in chapter 3.  As mentioned 

previously the pad roughness has been directly linked to the material removal rate and 

efficiency of the pad.  The pad roughness is plotted versus the polish time in figure 4.12. 

 

 

Figure 4. 12 Pad roughness vs. polish time 
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For pads (1) and (2) there is a direct relationship between the pad roughness and 

polishing time.  As the pads continue to polish the BPM the glazing effect reduces the 

pad roughness and thereby the MRR and resulting BPM surface roughness.  The increase 

in pad roughness seen in figure 4.12 for pad (3) results from deterioration of pad (3) 

during polishing.  The abraded pad particles were embedded on the surface of the pad 

during polishing and the resulting imaging seen in the appendix reflects this embedment. 

A secondary indicator for pad (3) roughness phenomena arises from the fact that the 

MRR did not increase for pad (3) as would be seen if the imaging were a correct 

representation of the pad surface without deterioration.   

4.5.2.4 Pad Thickness  

 

Industrial standards indicate that once the pad has reached half the original 

thickness the pad must replaced in order to reduce cost of losing useable wafer coupons.  

Replacing the pads is a costly procedure and benchmark evidence on the life of the pads 

for BPM is critical to reduce waste.  Figure 4.13 shows the reduction in pad thickness 

over time. 
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Figure 4. 13 Pad thickness vs. polish time 

 

The initial thickness is seen as the first data point on figure 4.13 for each pad.  

The pad thickness decreases with polish time as would be expected.  The rate at which 

the pads lose thickness is much faster than would be expected from IC CMP.  The pads 

tested have a pad life from 400-700 minutes and results indicate replacement of the pads 

at 100 minutes, 200 minutes, and 50 minutes for pads (1-3) respectively.  This dramatic 

change in pad life must be taken as a cost for polishing BPM and is due to the high initial 

roughness of the BPM surfaces when polishing as opposed to the relatively smooth 

surfaces for IC CMP.   

4.5.3 Metrics Discussion 

 

 It has been shown in the previous sections that the rougher the pad, the higher the 

COF, and the higher the COF, the higher the MRR, and pad roughness to the MRR.  This 

knowledge can prove beneficial from an economic standpoint because optimal pad 
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roughness for BPM is essential for polishing regimes and vendors can specifically supply 

pads with the required roughness values to improve sustainability and reduce polishing 

times.  For the pads testing and utilized to polish BPM configurations the highest removal 

rate was obtained by the k groove pad along combined with the highest surface 

roughness.  All three trends are linear in fashion and the values for polishes rates are 

presented in the appendix.  Pad (2) obtained the highest MRR with a value of 480.27 ± 

16.7 nm/min. 

4.5.4 Surface Morphology Characterization 

 

 A qualitative understanding of the surface morphology evolution during polishing 

is needed to predict pad life and wear characteristics; this is paramount for sustainability 

and process optimization during the CMP process.  The UTS and SEM machines were 

utilized to characterize each polish for the BPM from table 4.2.  Figures 4.10-4.15 show 

the representative surface evolution of pad (2) during polishing for 80 minutes of 

polishing (time required to polish wafer coupon to atomic roughness).  Pads (1) and pad 

(3) images are depicted in the appendix of this dissertation.  
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Figure 4. 14 As received and conditioned UTS and SEM images of pad (2) 

 

 The UTS amplitude is monitored as a function of height above pad and depth 

below its surface application of compression at different transmitted frequencies.  The 

normalized UTS figures are pictorial representation of the changes in specific gravity 

(which can be related to the density) during polishing, with the darker red areas deemed 

HT and the lighter colors deemed LT.  From figure 4.14, after conditioning the pad the as 

received pad the specific gravity increases along with the viscoelastic properties.  The 

surface characteristics from the SEM follow the UTS images. 

 

After Conditioning
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Figure 4. 15 UTS, SEM, and BPM surface roughness of pad (2) 10 polishes 

  

In comparison to figure 4.14, figure 4.15 shows a representation of the UTS value 

increase in the number of areas of HT.  This increase in HT corresponds to the increase in 

pad roughness as seen in section 4.5.2.  The SEM images show a rougher morphology of 

the polishing surface while the WYKO images indicate the surface roughness from the 

BPM wafer being polished.   
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Figure 4. 16 UTS, SEM, and BPM surface roughness for pad (2) 20 polishes 

 

After 20 polishes as seen in figure 4.16, the UTS graph indicates that the pad 

continues to become denser during polishing and the compression properties increase 

while the SEM morphology reflects the change in the surface characteristics.  It should be 

noted that the pad has a reduction in roughness, and the surface can be seen to contain 

slurry remnants and partial glazing of the surface.  The wafer surface continues to 

become further planarized and the results match well with the data from section 4.5.2.  

This trend is continued below in figure 4.17 and a summary of the results is described 

after figure 4.18. 
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Figure 4. 17 UTS, SEM, and BPM surface roughness of pad (2) 30 polishes 

 

 

Figure 4. 18 UTS, SEM, and BPM surface roughness of pad (2) 40 polishes 

 

The material properties of the pad begin to deteriorate after 40 polishes for pad (2) 

based on figure 4.15.  This decrease is also characterized by the SEM picture, and the 

overall surface quality for 40 polishes of pad (2) has reduced the BPM wafer surface 

down to approximately 10 nm.  The SEM images of the pad clearly depict slurry 
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remnants, pad glazing, and changes in the pore sizes and grooves due to the polishing of 

the rough BPM surface.  There remain a number of good HT regions in the pad after 40 

polishes therefore the pad is still suitable for polishing and therefore a new coupon was 

polished utilizing this pad. 

4.5.4 Pad Morphology Discussion 

 

The optimal polish time to planarize the BPM wafers for pad (2) was discovered 

to be 75 minutes for the process parameters in table 4.2.  A parametric study was 

conducted to determine how each output parameter would affect each other to determine 

other methods for EPD and polishing requirements.  The next step in determining the pad 

wear and polishing (beyond the UTS and SEM as these characterization techniques are 

costly and require the machine to be shut down in order to process this information).   

4.5.5 WTWNU 

 

The ability to detect the amount of variation that a particular pad will yield on the 

wafer surface is paramount and the ability to have accurate and repeatable results for 

given process conditions reduces cost and waste to the fabrication industry.  A statistical 

WTWNU measurement is calculated using by dividing the standard deviation of the 

wafer surface roughness by the average surface roughness of each polish.  This value will 

indicate how repeatable the polish parameters are for each pad and polish set.  Table 4.3 

contains the WTWNU values for each polish set (in increments of 10), up to the 

deterioration point of the pad or the planarity of the wafer. 
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Table 4. 3 WTWNU percentage based on BPM wafer CMP 

WIWNU 10 20 30 40 50 60 70 

Pad (1) 19.79% 27.48% 8.7% 6.87% 4.47% 11.32% 10.99% 

Pad (2) 14.32% 16.39% 8.54% 3.34% 11.47% 16.42% 13.47% 

Pad (3) 10.49% 9.61% 27.21% 28.01%    

 

From table 4.3, pads (1) and (2) follow a trend in which increase the polish time 

results in the surfaces having a lower WTWNU measurement.  Pad (3) had the highest 

WTWNU and this could be due to the rapid decline of the pad, as indicated by the steady 

WTWNU up to 30 polishes.  This table indicates that pad (2) produces the greatest 

number of repeatable results for polishing the copper BPM wafers.  

4.6 Conclusion and Remarks 

 

A benchmark parametric study on CMP pads for BPM copper wafers was 

completed to determine the effect on output parameters during the CMP process based on 

optimization of the machine parameters from chapter 3.  Results indicate that as the pad 

is polished over time the MRR, COF, BPM surface roughness, pad thickness, and pad 

roughness are decreased.  The process input parameters were held constant for polishing 

and a Stribeck curve was created for the pads based on the change in slurry thickness 

during polishing.  An analysis of the lubrication regime which helps dictate polishing 

output parameters indicate that pad (1) operates mostly in the full lubrication regime, pad 

(2) operates in the partial lubrication regime, and pad (3) operates in the boundary 

regime.   
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Results also show that a force sensor is easily implemented into most standard 

polishing systems and can be used to determine the COF and analyze the pad life, MRR, 

and surface quality based on the COF during polishing.  

The pad life, pad material removal, and pad roughness are characterized for 100 

200 minutes of polishing at the process parameters in table 4.2) for each of the three 

commercially available pads and results indicate that for BMP copper CMP, the Rodel 

dual layer IC 1000 Suba V k-groove pad provides superior MRR, wafer roughness, and 

pad life for polishing with Cabot iCue 5001 and Cabot iCue 5003 slurries.   

 The surface morphology evolution of the pad was characterized using a novel non 

destructive ultrasound technique and scanning electron microscopy.  The UTS readings 

are crucial indicators of the pad life and provide critical insight into the evolution of this 

morphology through a cost effective means.  The UTS characterization and SEM 

characterization were able to detect that the pad material properties are inversely 

proportional to the porosity of the pad.  This means that as the pads are polished over 

time the pores in the pad are worn away, and the lower material characteristics of the pad 

lead to a lower porosity and henceforth a lower MRR and COF.  Several other 

researchers have found this aspect true for blanket copper and dielectric polishing, but the 

novelty in this research is in proving that the BPM wafers pad life is much lower than pad 

life for blanket wafers, with an average percent difference of 63.63% [167, 168].  The 

experimental pad morphology lifetime without reconditioning was characterized for all 

three pads with images from the SEM, UTS, and WYKO in the appendix of this 

dissertation.   
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A statistical WTWNU measurement is calculated by dividing the standard 

deviation of the wafer surface roughness by the average surface roughness of each polish.  

This value will indicate how repeatable the polish parameters are for each pad and polish 

set.  Pad (1) provided the lowest WTWNU measurement, indicating that the repeatability 

of the process is optimal utilizing pad (1), although not optimal for MRR and surface 

roughness characteristics.  Results for the optimal machine parameters and pad are next 

utilized in the slurry characterization seen in the forth coming chapter.    
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CHAPTER 5:  SYNTHESIS OF NOVEL CMP SLURRY 

 

 

5.1 Foreword 

 

 The economic impact of the slurry during CMP for the semiconductor industry 

rises over 2 billion dollars a year.  There is significant research into manufacturing new 

slurries that have the capability of high removal rate, excellent global planarization, 

corrosion prevention (in case of metal, especially copper), good surface finish, low 

probability of defects and high selectivity.  The chemical and mechanical interactions of 

the slurry is the least understood mechanism during the CMP process and ongoing 

research has yet to adequately explain these mechanisms.  CMP is a process that is 

influenced by numerous slurry parameters such as pH, solution chemistry, charge type, 

concentration and size of abrasives, complexing agents, oxidizers, buffering agents, 

surfactants, corrosion inhibitors, etc [42, 173, 174].  The specific and proprietary nature 

of slurry manufacturing makes it difficult to elucidate the exact effects of slurry on the 

particular thin films that are polished by it.  The slurry interactions at the pad wafer 

interface are probably therefore, the least understood mechanisms in entire 

semiconductor fabrication process technology [154].  Due to lack of understanding of the 

mechanisms for polishing and the economic impact the slurry has, CMP slurry has 

continued to be a catalyst for research and development.  The ability to chemically etch a 

specific material and polish that material while essentially leaving the underlying 

material alone are interests of both the industrial and academic relevance.  Based on the 
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optimized machine parameters and pads the output parameters based on the slurry 

interaction are investigated as shown in figure 5.1.  

 

 

Figure 5. 1 Slurry optimization schematic 

 

 The research objectives of this chapter are: 

1)  Develop and investigate new nanodiamond (ND) slurry for BPM CMP 

2)  Determine the MRR and surface quality based on the new ND slurry. 

3)  Compare and contrast the novel ND slurry versus industrial slurry CMP. 
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5.2 Introduction 

 

 In order to create slurry that is novel in use and effective for the CMP process, an 

investigation into the most important aspects of the slurry is given in the following 

sections.  While not all of the chemical aspects are investigated for this slurry, this 

research is a feasibility study in utilizing nanodiamond (ND) particles in polymer matrix 

as a polishing solution or a final buffing solution for the CMP process.   

5.2.1 Effect of Slurry on Planarization (Surface Quality) 

 

 In order to achieve the strict requirements of the magnetic storage and 

semiconductor industries on the removal rate and surface roughness during CMP, the 

effects of the slurry must be investigated.  Table 5.1 lists the output parameters for global 

planarization and the mechanisms by which these parameters are achieved by the slurries 

[175].  The slurry parameters must be optimized so that the mechanical removal of the 

material is minimized because excessive mechanical removal produces high frictional 

forces and can thus damage the surface topography.  An initial study into the surface 

characterization of new and novel slurry was undertaken based parameters in the table 

below.  
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Table 5. 1 CMP process output and slurry mechanisms [175] 

Global 

planarity 

Removal Rate Surface 

defectivity 

Selectivity Slurry 

handling 

Formation of 

thin 

passivation 

layer 

Rapid formation of thin 

surface layer 

Rapid 

formation of 

thin surface 

layer 

Top layer 

chemomechanica

l polishing 

Formation of 

stable 

slurries 

Minimize  

chemical 

etching 

Control of 

mechanical/interfacial 

properties of the surface 

layer 

Minimize  

mechanical 

polishing 

Bottom layer 

mechanical 

polishing 

Control of 

interparticle 

and particle 

surface 

interactions 

Minimize 

mechanical 

polishing 

Stress induction by 

abrasion to remove 

surface layer 

Control of 

particle size 

and hardness 

Reduction of 

mechanical 

component in 

slurry 

Steric force 

based 

repulsion in 

ionic systems 

 Indentation based wear Control of 

particle size 

distribution 

  

 Fracture/delamination-

based removal 

   

 

 In order to make effective slurry for CMP there are several issues that must be 

considered before specific slurry design, the slurry must:  

 1) Minimize the frictional forces   

 2) Maintain constant local polishing pressure 

 3) Reduce excess chemical etching  

 The frictional forces must be minimized in order to ensure that the amount of 

surface defects is reduced.  High frictional forces indicate that polishing is going in 

boundary lubrication regime which is a two body abrasion mode in which the pad and 

wafer are in direct contact; consequently this would indicate that the slurry is not 

contributing to material removal.  Lowering the pressure and increasing the polishing 
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times helps to lower the COF and increases global planarity [175].  Ensuring that the 

local pressure is constant is paramount because variable pressure leads to variable 

polishing rates and non uniformity in the wafer surface.  Excessive chemical etching 

adversely affects surface planarity and induces defects on the surface such as corrosion 

[175, 176].  The novel slurry developed in this chapter seeks to lower the COF as 

compared to industrial slurry, while reducing the chemical etching on BPM matrices.   

5.2.2 Chemical Effect of Slurry of Material Removal Rate 

 

 The reaction of the slurry chemicals on the metal to be polished, the mechanical 

abrasion of the particles, the interplay of the different complexing agents, oxidizers, and 

corrosion inhibitors are all intertwined into one process during polishing.  There have 

been numerous studies on the effect of the chemicals in the slurry on the wafer surface.   

It has been concluded that the reaction rate and the creation of a passivation layer on the 

surface can be increased up to a limit by adding oxidizers and corrosive inhibitors [78, 

153].  Creation of a passivation layer weakens the metal surface allowing for the abraded 

particles to strike the surface and cause material removal.  Figure 5.2 is a diagram of 

these interactions.   
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Figure 5. 2 Pad/wafer interface reactions with the slurry 

 

5.2.3 Mechanical and Material Properties  

 

 The particle concentrations all play a role in the overall material removed during 

polishing.  The generalized abrasive material removal rate (MRR) for CMP has been 

modeled in the literature and is shown in equation 5.1 [153]. 

 

                                                    removednVolMRR                              (5.1) 

 

 The variable n is number of active abrasives taking part in the process and 

Volremoved is the volume of material removed by each abrasive. To estimate the total 

volume of material removed, it is necessary to estimate the total area of the pad/wafer and 

wafer/abrasive contact. The area of active abrasive contact is given by equation 5.2, 

 

                                                                 xA                              (5.2) 

 

Pressure

Slurry

Chemically 

passivating

surface layer

Abrasive 

particle
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where A is the area of contact, x is diameter of abrasive, and δ is the depth of indentation  

on the passivating film made by the abrasive particle [129].  Based on the above 

equations many models have been created that suggest the influence of the abrasive 

particle size on the material removal rate and surface finish.  Jairath et al. and Xie et al. 

observed that the polishing  rate increases with both particle size and concentration [177, 

178].  Contrary to these findings, Bielmann et al. have found that decreased particle size 

led to higher polishing rates or no effect on the MRR [179, 180].  Mahajan, Lee, and  

Sign have proposed that the CMP process is based on two removal mechanisms: an 

indentation based wear which dominates for large abrasive particles and a contact based 

mechanism which dominates for small abrasives [181].  In either case there is a saturation 

point for abrasives in which an increase the amount of particles and/or the particles size 

results in there no longer being an increase in the amount of material removed.  A 

qualitative explanation for this was given by Luo, the total contact area between the 

wafer and pad surface asperities is occupied by the active abrasives when saturation 

occurs, and a further increase in concentration cannot increase the number of abrasives in 

the contact area, as shown in figure 5.3 [147].  
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Figure 5. 3 Contact modes with abrasive weight concentrations 

 

 From figure 5.3, an increase in particle size as well as concentration will lead to 

the same effects from the saturation of the contact area.  Therefore there are two 

transitions of material removal regions with the increase in abrasive weight concentration 

or size.  First the transition from a rapid increase at a small abrasive concentration to a 

slower linear increase region.  The second transition is from the linear increase region to 

the saturation region at larger abrasive concentrations.  This example is shown in figure 

5.4. 

 

Large contact area

Particle abrasive

Smaller contact area

Pad asperity

Pad asperity

wafer

a) Top view of contact area prior to MRR saturation

c) Side view of contact area prior to MRR saturation

b) Top view of contact area full occupied by abrasives

d) Side view of contact area full occupied by abrasives
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Figure 5. 4 Example of saturation for MRR 

 

The figure gives an example of the effect seen in literature for increase the 

particle concentration, is this effect shown for polishing on SiO2 by Singh et al [175].  

 As shown by Singh, Bajaj  and, Mahajan et al., the removal rate of the silica 

increases with increase in particle size and concentration at low particle concentrations, 

however after a particular threshold for every given particle size the mechanism of 

removal changes and there is considerable decrease in removal rate with increase in 

particle concentration [181] .  This effect will be investigated for the novel slurry created 

in this chapter.   

5.2.4 Particle Size and Hardness 

 

 As mentioned in section 5.2.3, the particle size has the same effect as the 

concentration on the removal rate during CMP, and a similar figure to figure 5.2 could be 

drawn for particle size.  The particle size also has effects on the overall surface quality 

after polishing.  An increase in particle size or hardness also gives rise to surface defects 
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such as micro-scratches that cause fatal long-term device failure.  Bigger and harder 

particles would cause deeper micro-scratches, which will be very difficult to eliminate 

even by the final buffing CMP step.  Therefore in the creation of the ND slurry, the 

particle size is kept small.  Although diamond is the hardest natural material, the 

inclusion of the softer polymer matrices helps to reduce the effects after polishing of the 

harder abrasive particles.   

5.2.5 Abrasive Particle 

 

 The abrasive particle in the CMP slurry serves as the mechanical mechanism for 

abrasion during polishing.  Without the abrasive particles, the slurry would only aid in 

chemical corrosion of the surfaces.  Selection of the correct abrasives requires knowledge 

of the mechanical properties, hardness, and fabrication of the nanoabrasives.  

5.2.5.1 Commercial Slurry Abrasive Synthesis 

 

 The quality of the post CMP wafer surface is significantly dependent on the 

characteristics of the abrasive particles present in the slurry.  There are several abrasive 

particle type options and the table below outlines the abrasives and the synthesis 

technique.   
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Table 5. 2 Slurry abrasive characteristics 

Slurry 

Abrasive 

Synthesis Type 

Fumed (F), 

colloidal (C), Sol 

(S) 

Abrasive Use Characteristics Remarks 

Silica F,C,S 

 

Oxides: F,C Cu: C 

W: F, C 

Sizes vary, of 

medium hardness 

Low selectivity 

Polishes vast 

number of 

materials, low 

selectivity 

Alumina F, C Dielectrics 

Copper 

Strong Lewis-

acidic surface 

Very Hard 

Amorphous 

Low MRR on 

dielectrics, 

Hardness can lead 

to surface 

scratches 

Ceria  SiO2 Low scratches and 

high MRR 

Lewis-acidic 

surface 

Expensive 

High selectivity 

for SiO2 

Titania, Zirconia C, S FRAM, dielectrics 

 , oxides 

Additives have 

high hardness and 

selectivity 

abrasives 

High selectivity  

Low MRR 

Used with other 

abrasives 

 

 The synthesis method determines the size of the abrasive particles.  Fumed 

abrasives tend to be chained particles that are larger in size than colloidal abrasives, 

which consist of discrete particles in dispersion that precipitate from a solution. For the 



www.manaraa.com

 

159 

 

same solids concentration, the removal rate using a fumed abrasive is higher than that 

using a colloidal abrasive due to larger particle size.  For this reason the defect density 

using a fumed abrasive is also higher and the colloidal abrasive having a uniform particle 

size is preferred.  However, to achieve the same removal rate as using a fumed abrasive, 

the solids concentration of colloidal slurry must be almost three times higher, thereby 

increasing the cost of the slurry. 

5.2.5.2 Surface Quality Based on Abrasives 

 

 The generation of surface scratches depends on a wide variety of factors such as 

the process conditions as mentioned in previous sections of this chapter.  Of particular 

interest in the present research are the characteristics of the abrasive particles and their 

effect on the surface quality.  A comparison of ND polymer slurry synthesized to the 

abrasives used for commercial copper CMP helps to evaluate the surface quality and 

feasibility of the ND polymer slurry during polishing.  Several other commercial 

abrasives have been detailed in literature and are not characterized in this dissertation 

[136, 156, 176, 182, 183].  Alumina particles have been used for copper CMP due to their 

low selectivity and material removal of the dielectric layer below copper, but the high 

hardness value has lead to severe surface scratches.  These particles typically have a 

Mohns hardness value of 9, which is only below the hardness of diamond which values at 

10.  

 The alumina abrasive particles can agglomerate in the slurry.  The effective size 

of the particles can be much higher than the specification of the slurry and the 

agglomerated particles can make deep scratches in the surface.  The deep scratches result 

in defects that cannot be removed by any other post processing techniques.  Commonly 
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used ceramic abrasive particles are much harder than the low dielectric constant materials 

and copper.  These particles can easily scratch the surface and, if agglomerated, can result 

in permanent scratch defects. Thus, the inherent nature of the particle plays a significant 

role.  

 The abrasive particles that result in low friction at the interface are beneficial to 

the process due to the fact that lower friction helps reduce surface damage during CMP 

[184].  The particle residue encountered after polishing along with post CMP cleaning are 

parameters that must also be investigated for any slurry fabricated[135, 185]. 

5.3 Novel Nanodiamond (ND) Slurry Synthesis 

 

 Knowledge of the slurry chemistry, particle size, particle concentration, and 

hardness are properties that must be investigated in order to create any new or novel 

slurry.  The slurry developed in this dissertation contains composite particles that are 

inherently soft due to the presence of polymer.  This alternative approach involves using 

responsive polymer microgels to entrap the ND particles and utilize the new slurry for 

CMP.  In this approach, the ND particles will on the surface of the polymeric microgel 

(hybrid composites) and will conceivably prevent aggressive abrasions of the ND on the 

wafer surface resulting in smoother surfaces and reduced surface damage.  The ND slurry 

composite is hypothesized to provide a cushioning effect to the wafer due to the soft 

nature of the polymer and yet achieve appreciable CMP material removal due to the 

abrasion of the hard ND particles.  The polymer particles exhibit controllable surface 

hardness and chemical nature and hence are hypothesized to prevent aggressive 

scratching, particle residue, and apply high mechanical stress during polishing. The 

incorporation of functional groups onto polymer latex surfaces to form new hybrid 
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materials represents an emerging discipline for the synthesis of novel materials with 

diverse architectures.  Polymer particle synthesis and characterization was initially 

conducted and verified by Dr. Cecil Coutinho under the guidance of Dr. Vinay Gupta in 

the Department of Chemical Engineering at the University of South Florida.  

5.3.1 Hybrid Particle Synthesis 

 

Unless otherwise noted, all chemicals were purchased from Sigma-Aldrich (WI) 

and used without further purification. The monomer nisopropylacrylamide (NIPAM TCI) 

was recrystallized from hexane before use.  With the goal of developing novel slurry for 

CMP applications, polymer-siloxane (hybrid) microgels were formed by the surfactant 

free precipitation polymerization of NIPAM (5g) in aqueous media (800 ml) using N,N‘ 

methylenebisacrylamide (0.2g) as the cross-linker.  Following purging with N2 for 1h, the 

reaction mixture was heated in an oil bath to 75°C and the ionic initiator potassium 

persulfate (0.1g) was added to instigate polymerization.  After an initial polymerization 

of 2 hours, 3-(trimethoxysilyl) propyl methacrylate (1g) was added to the reaction 

mixture and the polymerization continued for a further 90 minutes. The microgels formed 

were collected and purified by repeated centrifugation (7800g, 30minutes) and re-

dispersed with deionized water [186-188].    

 The nanodiamond (ND) particles were acquired from International Technology 

Center (ITC Raleigh, NC).  The particles were suspended in a water solution with 1 wt% 

concentration.  The ND particles are 98% pure and are all in cubic phase and were 

measured to be 5 ±3 nm. 

 The ND slurry was composed of the softer NIPAM microgel matrix and the 

harder fused ND particles.  For characterization of the slurry, 500 μl of the ND particles 
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were immersed in 4 ml of deionized water.  The solution was put into an ice bath and was 

allowed to chill for twenty minutes.  In conjunction with the ice bath, 250 μl of NIPAM 

was immersed in 2 ml of deionized waters and the solution was put on a hot magnetic 

stirring plate and heated and stirred at 40°C for twenty minutes.  Heating NIPAM allows 

the thermally responsive polymer to denature the polymeric chains that create the spheres 

seen from TEM imaging.  Once the NIPAM is receptive to the ND particles the two 

solutions are mixed together on the stirring plate for 30 minutes.  The solution is then 

centrifuged at 5000 RPM for an additional 30 minutes.  The new slurry labeled 

NIPAMND is settled and dispersed in 3ml of deionized water.   

5.3.2 Particle Characterization  

 

 The NIPAM particles along with the ND particles were characterized to ensure 

synthesis and fabrication of the particles was successful.  Dr. Coutinho completed the 

dynamic light scattering characterization of the NIPAM particles while the rest of the 

characterization was completed during the research of this dissertation.  

5.3.2.1 NIPAM Dynamic Light Scattering [188] 

 

 Microgel sizes and polydispersities were determined via dynamic light scattering 

(DLS) using a Zetasizer Nano-S (Malvern, PA).  Samples were sonicated prior to 

analysis. A 1ml of the microgel solution was placed into a cuvette and allowed to 

thermally equilibrate to a certain temperature for 10 minutes before each measurement.  

Data fitting was done using a multi-modal algorithm supplied by Malvern.  The collected 

correlelograms were fitted to diffusion coefficients and converted to a hydrodynamic 

diameter using the Einstein-Stokes equation [186-188].     



www.manaraa.com

 

163 

 

5.3.2.2 Transmission Electron Microscopy (TEM) 

 

 The NIPAMND composites were examined using TEM to visually determine the 

extent of ND loading and dispersion within the polymer matrix.  A drop of the sample 

solution was diluted with ethanol and then was placed on a Formvar-coated Cu TEM grid 

that was examined using a FEI Morgagni 268D.  

5.3.2.3 Post CMP Surface Characterization 

 

 Qualitatively, the surface quality of the BPM and blanket copper surfaces post 

CMP was examined by WYKO NT 9100 and a Leitz Ergolux optical microscope.  The 

resulting surface roughness was measured from the WYKO NT 9100.  The removal rates 

were calculated from four point probe measurements on the sample and details of those 

calculations are in chapter 3, section 3.2.4.2.  The initial and final thickness 

measurements were calculated as an average after nine different readings were taken.  

The benchtop CMP tested provided real time measurements of the friction coefficient 

during polishing and the average value after the process had reached state has been 

reported.     

5.4 Experimental Conditions for ND Slurry and Particle Slurry Testing 

 

 Three different slurries were used as a comparison for testing the validity of the 

NIPAMND slurry.  The slurries were tested on the MIT 854 BPM copper wafer and a 

blanked wafer of copper.  The blanket wafer was fabricated at University of South 

Florida, NREC and is a silicon substrate with, a 5nm layer of barium on top of the silicon 

substrate, as well as a 10 nm layer of tantalum, and finally electrodeposited with 10µm 

thick copper.  The Cabot iCue 5001 colloidal alumina commercial slurry, the NIPAM 

polymer matrix, and the developed NIPAMND slurry have their properties displayed in 
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table 5.3.  All the slurries formulated were to have an equal amount of weight percentage 

of abrasive particles.  

 

Table 5. 3 Slurry details 

Slurry Name Particle type Particle Size (nm) Hardness (Mohrs) Wt% 

Cabot iCue 5001 Alumina 20 ± 6 nm 9 1.5 

NIPAM Hybrid polymer 500 ± 20 nm 0 1.5 

NIPAMND Hybrid-ND 500 ± 40 nm ND-10 1.5 

 

 The slurries were then employed for performing CMP on the BPM copper wafer 

mentioned in chapter 3, section 3.2.1, they were also used on blanket 1‖ blanket copper 

wafers.  The testing of the slurry samples was carried out at the process conditions 

summarized in table 5.4.   

 

Table 5. 4 Process conditions for slurry testing 

# Parameter Value 

1. Pressure 4 Psi 

2. Platen speed 200 RPM 

3. Carrier speed 200 RPM 

4. Slider movement 3 mm/s 

5. Slurry flow rate 75 mL/min 

6. Time 60 seconds 

7. Pad Rodel IC 1400 Suba K-groove pad 

8. Specimen MIT 854 BPM 1‖x 1‖ copper coupons 

 

5.5 Results and Discussion 

 

 As with chapter 4, the amount of data acquired for analysis through the WYKO 

NT9100 greatly exceeds the amount of reasonable space in this dissertation therefore 

images and characterization for the surface profile presented in the section are the images 
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that reflect the most important information of all the data.  Additional data is presented in 

the appendix of this dissertation.  The blanket copper polish experimentation was done to 

compare to the IC industry to determine if the ND slurry was a feasible means for either 

IC fabrication or BPM fabrication.  The blanket results due not elucidate any information 

on BPM CMP. 

5.5.1 TEM Imaging 

 

 The hybrid particles were synthesized using precipitation polymerizations, and all 

three slurries were characterized using TEM, and the average size from the TEM 

calculations is shown in table 5.3.  Figure 5.5 contains the image for the three abrasive 

particles from the TEM imaging. 
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Figure 5. 5 Slurry particles 

 

 The agglomeration for the particles in all three figures seen in above is cause for 

concern for the result surface quality.  The massive agglomeration of the Cabot slurry 

particles helps further validate the necessity of new and novel slurry.   

5.5.2 COF of the Slurry Abrasives 

 

 The values from the CMP benchtop tester for COF during polishing for the 

abrasives against the BPM and blanket copper wafers are shown in figures 5.6 and figure 

5.7 respectively. 

A) Alumina particles B) NIPAM particles

C) NIPAMND particle
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Figure 5. 6 COF vs. BPM wafers 

 

 

Figure 5. 7  COF vs. blanket copper wafers 

  

From the figures above, it is evident that the softer NIPAM particles have the 

lowest COF, whereas the Cabot and the NIPAMND particles have coefficients that are 

similar.  This is to be expected since the hardness values (e.g., the amount each particle 

will indent into the surface and possibly abrade the material) are larger than that for the 
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NIPAM alone.  Hardness is the ability for a surface to resist plastic deformation, and this 

resistance can be linked to the COF.  The hardness of the NIPAM lends to the indentation 

based wear regime developed by Mahajan et al., but the size leads to the contact based 

wear, and this is optimal for the polishing regimes of the NIPAMND.  The fact that the 

alumina particles have a higher COF than the NIPAMND even though the NIPAMND 

has harder abrasives than the alumina particles is promising and elucidates further 

research into the NIPAMND slurry as a technique for CMP.   

5.5.3 MRR Versus the Abrasive Particle 

 

 The MRR for the slurries must be known in order to determine the feasibility of 

the process.  Figure 5.8 contains the MRR versus the various slurries for the polishing 

parameters in table 5.4.   

 

Figure 5. 8 MRR vs. wafer type for analysis of slurry abrasives 
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 Figure 5.8 details the interactions of the slurry with the wafer surfaces.  The 

NIPAM slurry achieves the lowest MRR, and this is expected due to the inability of the 

particles to impinge upon the harder copper surface and remove material.  The removal 

mechanism during this polishing is solely due to the asperities of the pad and the wafer 

asperities.  The NIPAMND slurry has a significantly higher MRR than the NIPAM alone, 

but this value still falls short of the Cabot slurry MRR. The difference in the MRR for the 

Cabot slurry and the NIPAMND cannot be explained solely by the hardness of the 

abrasive as it can with the COF data.  The Cabot slurry has a chemical aspect that both 

the NIPAM and NIPAMND slurry do not contain, as this commercial slurry has oxidizers 

and passivating agents in order to further break up the copper surface to help the abrading 

particles.  In order to develop fully commercialized NIPAMND slurry the chemical 

aspects of the slurry and the interacting surface must be fully understood and 

investigated.   

5.5.4 Surface Quality and Roughness 

 

 The resulting surface roughness (RMS) values from polishing of the blanket 

copper wafers and the BPM wafers are shown in table 5.5.  The initial roughness value 

for the BPM is 352.73 ± 1.24 nm and for the blanket copper wafers the initial value is 

50.92 ± 2.46 nm. 

 

Table 5. 5 Surface roughness for slurries 

Slurry BPM Roughness (RMS) Blanket Cu (RMS) 

Cabot iCue 5001 308.23 ± 3.45 nm 27.37  ± 3.16 nm  

NIPAM 343.07 ± 2.21 nm 41. 75 ± 2.08 nm 

NIPAMND 344.25 ± 2.72 nm 38.18  ± 2.31 nm 
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From the table above, the Cabot and the NIPAM ND slurries result in very similar 

surfaces although the MRR is much greater with the Cabot slurry.  The surface roughness 

of the blanket copper wafer with respect to the NIPAM slurry is defect free but the MRR 

and the resulting RMS values indicate that the NIPAM slurry is ineffective without a 

harder abrasive agent for copper CMP.  The WYKO images of three slurries for the BPM 

matrix and blanket copper wafers are shown in figures 5. 9 and 5.10 respectively.   

 

 

Figure 5. 9 WYKO surface profiler images for BPM polishing 

 

From figure 5.9 the NIPAM and the NIPAMND had very similar surface 

roughness values for the BPM wafer polishing although the MRR for the slurries 

differed.  The theory behind the matching surface roughness values arises from the ND 

particles that were not removed during post CMP clean up.  These particles embedded 

themselves in the BPM configurations and continued to cause scratches on the surface or 

were embedded in the matrix configurations themselves.   
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Figure 5. 10 WYKO images of slurry polishing of blanket copper wafers 

 

 From figure 5.10, the results are indicative of the MRR results.  The NIPAMND 

slurry achieves greater local and global planarity then the NIPAM particles themselves 

while still lacking in overall polish quality of the commercially available Cabot slurry.  

The NIPAMND surface was further hampered by ND embedment in the surface and this 

is an issue to address in the post CMP cleanup process.  

5.6 Analysis of NIPAMND Abrasive Concentration 

 

 With a successful synthesis and polishing using the NIPAMND slurry, an initial 

investigation into two different abrasive concentrations and the saturation point is 

studied.  Due to the success of the blanket copper wafer CMP, only these wafers are 

included in the study of the saturation point and the process outputs.  The nomenclature 

used for the number of abrasive particles is as follows: 
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1)  Particle (1):  6.07x 10
19 

ND particles in the solution 

2) Particle (2):  1.21x10
20

 ND particles in the solution 

3) Particle (3):  1.81x10
20

 ND particles in the solution 

4) Particle (4):  3.642x 10
20

 ND particles in the solution. 

The values for the number of ND particles in the solution were arbitrarily chosen.  

The novelty of the slurry requires inherent baseline testing for the number of abrasives.  

The same synthesis technique of the NIPAM slurry as mentioned in section 5.3 is done 

for this research parameter.  The amount on ND concentration is varied.  The same 

process parameters and characterization techniques as table 5.4 are investigated.    

5.6.1 COF and the Abrasive Particle Concentration 

 

 Figure 5.11 shows the variation in the COF with the different abrasive 

concentrations used in parametric study.   

 

Figure 5. 11 COF vs. number of particles for NIPAMND slurry 
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 Figure 5.11 details that the COF value does not significantly increase for the 

parameters from table 5.4, above particle (3) number.  This could be due to saturation of 

the particles on the contact area of the wafer, with full coverage increasing the number of 

particles impinging the surface will not increase active particles in the polishing region 

and thereby the COF.   

5.6.2 MRR and Abrasive Particle Concentration 

 

 Figure 5.12 shows the MRR versus the abrasive particle concentration for both 

the blanket copper wafers and the BPM wafers.   

 

 

Figure 5. 12 MRR vs. number of abrasive particles for NIPAMND slurry 

 

 Figure 5.12 indicates that the saturation point for the number of particles that are 

active in the contact area during polishing is at particle number (3).  Above this number 

of particles the MRR no longer increases linearly and the resulting slurry particle 

concentration is not advantageous for polishing. 
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5.6.3 Surface Roughness and Abrasive Particle Concentration 

 

 Table 5.6 contains the surface roughness values for the abrasive concentrations 

used during experimentation.   

 

Table 5. 6 WYKO surface profile data for number of particles 

Number of Abrasive Particles Surface Roughness (RMS) 

Particle (1) 38.18 nm 

Particle (2) 34.17 nm 

Particle (3) 31.21 nm 

Particle (4) 30.54 nm 

 

 From table 5.6 and the data from figures 5.11 and 5.12 increasing the number of 

particles and thereby the cost of the slurry does not significantly increase the output of 

the deliverables of the slurry (e.g., MRR and surface roughness).  For the NIPAMND 

slurry the optimal number of particles for copper CMP remains between particle number 

(2) and (3).   

5.7 Conclusions and Remarks 

 

 There has been tremendous amount of research and development of novel slurries 

funneling from the 1 billion dollar economic impact that the slurries have on CMP.  

Although there is a multitude of slurries for various applications no slurry exists that has 

been able to polish several different materials locally and globally without a detrimental 

effect to the surface finish.  In this chapter new novel hybrid polymer based ND slurry 

were developed for polishing on both BPM copper wafers and blanket copper wafers.  

The process parameters remained constant during polishing and the resulting COF, MRR, 
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and surface roughness were monitored.  The particles were characterized by DLS and 

TEM.  The NDs were suspended within the thermally responsive NIPAM polymer matrix 

and provided better results for polishing the then previously published NIPAM polishing 

results because the hard ND particles were a better abrasive for wear than the softer 

NIPAM slurry [186].  Consequently the NIPAMND slurry contained a higher COF than 

the NIPAM slurry and was comparable to the commercial slurries in the COF.  This 

higher COF may be attributed to the hardness value of the ND particles.   Upon 

successful synthesis and testing of the NIPAMND slurry, two different concentrations 

were created to test the saturation limit for the ND particles and the removal rate.  It was 

determined that beyond particle number (3) the MRR and surface roughness outputs 

remain nearly constant for polishing of the blanket wafers.  Discussion of future work 

will be in chapter 7.   
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CHAPTER 6:  CMP MODELING OF MICROSTRUCTURAL VARIATION  

 

 

6.1 Foreword  

 

With the rapid change of materials systems and decreased feature size, thin film 

microstructure and mechanical properties have become critical parameters for 

microelectronics reliability.  This requires inherent knowledge of the mechanical 

properties of materials and an in depth understanding of the tribological phenomena 

involved in the manufacturing process.  CMP is a semi-conductor manufacturing process 

used to remove or planarize ultra-thin metallic, dielectric, or barrier films (copper) on 

silicon wafers.  The material removal rate (MRR), which ultimately effects the surface 

topography, corresponding to CMP is given by the standard Preston equation, that 

contains the load applied, the velocity of the pad, the Preston coefficient which includes 

chemical dependencies, and the hardness of the material.  Typically, the hardness, a bulk 

material constant, is taken as a constant throughout the wafer and thereby included in the 

Preston coefficient.  Through metallurgy studies (on the micro and nano scale) it has been 

proven that the hardness is dependent upon grain size and orientation.   

This research served to first relate the crystallographic orientation of a crystal to a 

hardness value.  The second objective of this chapter is to use the hardness variation in 

the previously developed particle augmented mixed-lubrication (PAML) model to verify 

the surface topography and MRR during CMP.   
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6.2 Introduction 

 

Wear is the phenomenon of material removal from a surface due to interaction 

with a mating surface either through micro fracture, chemical dissolution, or melting the 

contacting surface.  In the case of plastic contact between hard and sharp material and a 

relatively softer material the hard material penetrates the softer one causing fracture; this 

fracture can lead to micro-cutting and ultimately material removal.  

 As mentioned above CMP is utilized in the semiconductor industry for 

planarization of thin film metal layers on a silicon substrate.  For most reliability and 

performance tests, knowledge of the thin film constitutive mechanical behavior is 

required.  Mechanical properties of thin films often differ from those of the bulk 

materials due to the small grain sizes attributed to the deposition methods.  Small sized 

grains typically contain high grain boundary volume fractions that can lead to an increase 

or decrease in resulting hardness dependent on the volume fraction [189].  This can also 

be partially explained by the nanocrystalline structure of thin films and the fact that these 

films are attached to a substrate. Most research on mechanical properties has 

concentrated on measurements of hardness as function of grain size; however this 

relationship has not been extensively investigated in relation to CMP and the resulting 

MRR.  Thin film mechanical properties can be measured by tensile testing of 

freestanding films and by the micro-beam cantilever deflection technique, but the easiest 

way is by means of nanoindentation (chapter 3, section 3.2.2), since no special sample 

preparation is required and tests can be performed quickly and inexpensively.  For most 

reliability and performance tests, knowledge of the thin film constitutive mechanical 

behavior is required. Mechanical properties of thin films often differ from those of the 
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bulk materials, due to the small grain sizes attributed to the deposition and various 

annealing methodologies [105, 110]. 

6.3 Crystallography 

 

There are two major factors that affect the hardness of a material; the size of 

grains coupled with types of grain boundaries and the individual grain orientation, (e.g., 

the crystallography).  The grain boundaries disrupt the movement of dislocations in a 

crystal and the disruption leads to larger applied forces required to cause the crystal to 

deform.  This leads to a larger yield stress for plastic deformation and the smaller the 

grains the harder the material, this relationship is known as the Hall-Petch relationship 

which relates grain size to yield strength, however there is a limit to dependence on size 

of the grain on a micro nano-scale as the relationship begins to break down for grains 

smaller than 1 micron and the hardness to grain size relationship on the scale has yet to 

be completely investigated [190, 191].    

The orientation of the grain will determine how a dislocation will move. The 

presence of dislocations strongly influences many of the properties of real materials.  The 

critically resolved shear stress (CRSS) is a characteristic property of a material. The slip 

system that it is activated under CRSS and can be measured by orienting a single crystal 

sample with respect to the applied stress and calculating the yield stress.  Copper is a face 

centered cubic (FCC) structure which contains 12 different slip systems.  The CRSS 

effects the yield stress of the material thereby affecting the hardness, the predominant slip 

plane for copper is [111]. Values of CRSS for FCC metals range from 0.34 MPa to 0.69 

MPa.  The material slip system for copper is {111} <110> and the CRSS for copper is 

0.64.  
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The orientation variation is dependent on the deposition method and more 

specifically, the time and temperature at which the target is deposited on the substrate.  

Sputtering copper directly onto silicon wafer leads to less variation while electroplating 

copper yields a greater variation in orientations.  Annealing the wafers after the 

deposition process causes the variation in grain size to decrease and the predominant 

orientation <111> results [8].   

6.4 Experimental Design 

 

A blanket set of polished orientation (100) 1-10 ohm-cm SSP 4850um Prime 

silicon wafers were deposited with .75 μm of copper using the Materials Research 

Science Engineering Center (MRSEC) at Carnegie Mellon University.  One set was 

electroplated and the other set utilized sputtering as the deposition method.  Both sets 

were then annealed at 450 degrees centigrade for 13 hours in order to allow the grains to 

grow on the order of several microns. 

Following annealing, the sample was then polished using the Strabraugh chemical 

mechanical polisher in order to remove any oxide layers that may have formed from the 

annealing process. 

A Hysitron triboindentor shown in figure 6.1 was then used in order to obtain the 

deterministic surface topography of the sputtered and electroplated surface.  X-Ray 

diffraction and orientation imaging microscopy (OIM) were utilized after annealing to 

determine the orientations of the grains in the sample, these were found to be the 

predominant <111> orientation.  A raster can was implemented in order to scan a 30-μm 

by 30-μm area and provide the profilometry of that surface.  Figure 6.2 shows the surface 

topography of the wafer. 
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Figure 6. 1 Hysitron nanoindenter 

 

 

Figure 6. 2 Deterministic surface topography 

 

A nanoindentation method was utilized to determine the hardness variation 

throughout the 30-μm by 30-μm sample and a contour plot of the hardness versus (x,y) 

position is shown in figure 6.3 along with a hardness grid corresponding to the gray scale 

on the plot.  An indentation depth less than 10% of the film thickness was done to avoid 

indentation size effects (ISE). 
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Figure 6. 3 Contour map of hardness 

 

The gray scale shown here has hardness values of 1.2 GPa, the white correspond 

to values in the range of 2.0 GPa, and the black with values ranging near 1.75 GPa. 

Elastic modulus variation was shown to range from 115 GPa to 132 GPa. 

6.4.1 CMP Simulation 

 

The coefficients of load, Papp, equal to 100 microNewtons, Upad and Uwafer equal 

to 10 RPMs, and Preston coefficient, k equal to 1, are all initialized in the PAML model.  

The Preston coefficient is set to 1 therefore the effects of the slurry are negated for this 

simulation.  The authors determined a thorough understanding of the mechanical abrasion 

and the resulting effect from variable hardness is a first case scenario.  Future simulations 

will incorporate slurry chemistry and colloidal particle effects.  The experimental surface 

topography was imported and a technique developed by Dickerell et al., is utilized to 

convert the experimental data into volume pixels (voxels).  Each voxel, shown in figure 

6.4 contains the x-y and z position in three-dimensional space of each grain along with 

the corresponding value of hardness from experiments.  A random pad surface 

topography is generated and contact is initiated with the wafer surface.  The stress on 

individual voxels is calculated and these stresses are used to calculate individual and 
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cumulative wear rates on the wafer surface.  The wear distance from each voxel is 

calculated and then subtracted from the wafer surface.   

 

 

Figure 6. 4 Voxelized surface topography 

 

6.5 Simulation Results 

 

The results from the numerical simulation are shown in figure 6.5. 

  

 

Figure 6. 5 Cumulative wear rate simulation of CMP 
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The MRR difference between the variable hardness and bulk modulus value 

(constant hardness) is 2.17 m
3
/s.  Although this value is not large the chemical effects 

and particle dynamics of the slurry have not been incorporated in this initial investigation.  

This wear is calculated by the aforementioned numerical simulations.  Of greater 

importance is the resulting surface topography as this relates directly to the viability of 

the integrated circuit or media storage device fabrication.  Incorporation of the variation 

of hardness resulted in a surface topography with a difference in roughness from the bulk 

constant hardness value of 6 nm. 

6.6 Conclusions and Remarks 

 

 A two-part investigation was conducted in order to determine if a previously 

developed chemical mechanical polishing (CMP) model, PAML, could be enhanced 

through further experimental validation.  The first part involved relating the critically 

resolved shear stress (CRSS) of a single crystal to an individual hardness value.  An 

investigation relating the CRSS to the hardness value was conducted based on the 

orientations and hardness values from experimentally found properties.  Currently there is 

not an empirical model or equation to relate the CRSS to the hardness value.  The second 

part of this investigation utilized the variation in hardness values from the initial study 

and incorporated these results into a particle augmented mixed-lubrication (PAML) 

numerical model that incorporates all the mechanical physics of chemical mechanical 

polishing (CMP).  Incorporation of the variation of hardness resulted in a surface 

topography with a difference in roughness from the bulk constant hardness value of 6nm.  

The MRR of the process differs by 2.17 m
3
/s.   
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 CHAPTER 7:  MULTIPHYSICS DISCUSSION OF BPM CMP 

 

 

7.1 Foreword 

 

The feasibility of utilizing the CMP process for planarizing patterned media has 

been investigated and benchmark data has been reported. The CMP process is a multi-

physics process in which the machine inputs, pad, and slurry characteristics affect the 

output parameters as shown in figure 2.16 and repeated below.   

 

Figure 7. 1 CMP process parameters 
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Based on figure 7.1, the machine input parameters, pad characteristics, and slurry 

characteristics were evaluated to help determine the optimum polishing pressure, pad and 

wafer velocities, and CMP pad.  A separate evaluation on the role of the CMP slurry 

based on the characteristics of the aforementioned parameters was also conducted.  

During the CMP process the machine input parameters dictate the removal mechanism, 

resulting MRR, surface roughness, and surface defects.  The inputs for pressure and 

velocity are the key parameters which determine the outputs.  Due to the complexity of 

the process, the relationship between each parameter and resulting output is not 

straightforward and this chapter discusses the interactions between all of the parameters 

and introduces a conclusion on the feasibility of using CMP for the PM planarization 

process.   

7.2 Pad Based Wear 

 

From chapter 3, it has been reported that as the pressure is increased and the 

velocity is held constant, the MRR increases at a faster rate than if the pressure is held 

constant and velocity is increased.  The resulting MRR from the two cases offers insight 

into the fundamental science of CMP polishing, namely, pad based wear versus slurry 

based wear as the main polishing theory. 

For the case of increasing pressure and constant velocity the main polishing 

mechanism is the pad, and is deemed pad based wear.  The increase in pressure causes an 

increase in two body abrasion as the wafer and pad are forced into contact due to the high 

pressures.  Figure 7.2 shows the schematic of two body abrasion during polishing.   
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Figure 7. 2 Pad based wear 

 

Two body abrasion results in a high COF, high MRR, high surface defects, and 

the boundary lubrication regime (from the Stribeck curve).  It is useful to note that in the 

calculation of the qualitative Sommerfeld number during polishing, increasing the 

pressure decreases the overall Sommerfeld number shifting the curve further into 

boundary lubrication which was detailed in chapter 2.4.2.1.  Pad based wear also results 

in microcrack formation during polishing as seen and explained in chapter 3.  For the 

case of BPM, the high pressures and fatigue of polishing the metal causes shearing of the 

crystals, causing work hardening on the BPM and thereby causing an increase in the 

mechanical properties during polish.  This increase is only momentary as the crack 

propagation occurs through the fatigue of the metal during polishing.  The cracks formed 

during polishing weaken the material and also reduce the reliability of the BPM in 

magnetic storage hard drive use.   

Pad based wear also results in the highest pad wear during polishing as evidenced 

in chapter 4 through pad thickness and pad roughness studies.  The rougher pads initially 

start in the boundary lubrication regime and result in higher MRR.  The pads then slowly 
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transition into the partial lubrication and finally full lubrication regimes during polishing 

(based on Sommerfeld number and COF).  The high pad wear reduces the pad roughness 

and pad life but also plays a vital role in reducing the wafer surface roughness due to the 

high MRR.  During the CMP process the two body wear is most beneficial at the start of 

the process due to the high wear rates but is also detrimental to the pad life. 

There is little slurry interaction with pad based wear, due to increase in pressure 

the entrenched fluid (slurry) is ―pushed‖ out to the edges of the polishing pad.  Therefore 

interaction of the wafer surface and slurry only results from the chemical corrosion of the 

wafer surface and not from the abrasive particles.   

7.3 Slurry Based Wear 

 

The opposite is true as the velocity is increased and pressure is held constant 

during CMP.  The increase in the relative velocity which is correlated to the angular 

velocities of the pad and wafer carrier increases the entrenchment of the slurry to the 

wafer surface.  As velocity is increased the Sommerfeld number is increased shifting the 

polishing regime further to the hydrodynamic lubrication or full lubrication regime.  This 

regime has the slurry fluid supporting the entire load (pressure) with little or no wafer to 

pad contact.  This regime is also two body abrasion, but the abrasion occurs between the 

abrasive nanoparticles and the wafer surface as shown in figure 7.3. 
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Figure 7. 3 Slurry based wear 

  

 The full lubrication regime results in lower MRR but less surface defects and 

lower surface roughness values.  The wear from the abrasive particles is based on 

indentation or ploughing.  During ploughing the slurry abrasives are harder than the 

wafer surface being polished. The harder slurry abrasives such as alumina, silica, Titania, 

zirconia, or nanodiamond plastically plough through the surface during polishing by 

striking the surface causing the surface to plastically deform.  The material removal is 

completed through the angular velocities of the pad and wafer carrier during which the 

ploughed wafer surface particles are removed from the surface through centripetal 

acceleration.  Increasing the velocity during CMP of BPM increases the number of 

collisions between the slurry abrasives and the wafer surface, thereby increasing 

ploughing.  This serves to also remove the abraded material more quickly than at slower 

speeds.  The evidence of the ploughing surfaces can be seen in chapter 3 for the high 

polish pressures in which the harder alumina particles leave ―streaks‖ from where the 

abrasive particle has ploughed through the surface causing surface defects.  The slurry 
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based wear has lower MRR than the pad based wear but the resulting surface defects and 

roughness values are better.   

 The slurry interaction during slurry based wear is pivotal as the wafer surface is 

only in contact with the slurry during polishing.  The chemistry, particle size, particle 

distribution, and particle material properties all contribute to the MRR and resulting 

wafer surface.  An important caveat of the slurry chemistry and particles is the abrasive 

agglomeration during polishing.  In both cases of polishing for NDs and alumina abrasive 

the particles agglomerated to form larger particles which are detrimental to the CMP 

process.  As the larger particles interact with the surface the ploughing of these particles 

has two effects on the surface:  

1) The bigger particle removes a greater amount of material then the non 

agglomerated particles resulting in a reduction in the surface quality of the 

surface  

2)  As the particles plough the surface the bigger agglomerated particles begins to 

deposit particles onto the BPM during polishing consequently both effects are 

undesirable for BPM CMP.   

During polishing of the BPM the MRR was increased with an increase in the 

hardness of the abrasive particle and an increase in the number of particles in a solution.  

Due to the regime of polishing, low MRR, and high initial surface roughness of the BPM, 

the amount of slurry required to polish the surface to an atomically smooth surface is 

increase thereby increasing cost.  As the slurry is the most expensive consumable 

conducting polishing in this regime of low pressure and high velocity is not cost-effective 

for all materials.  
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 During slurry based wear the pad lifetime is decreased through ―glazing‖ of the 

pad surface even though the pad is not in direct contact with the wafer surface and not 

being worn away (allowing for softer and less expensive pads).  Glazing is a CMP 

phenomenon in which the slurry abrasive become entrapped in the pad surface along with 

chemical etchants and wafer surface particles.  The glazing effect reduces the surface 

roughness of the pad through the two body abrasion of the pad surface by abrasive 

particles (akin to the wafer surface).  Results from the nanoparticle deposits on the pad 

surfaces were characterized in the SEM images in the appendix of this dissertation.  The 

glazing effect decreases the pad thickness over time and reduces the number of usable 

pads during polishing. 

7.4 Mixed Polishing 

 

The final set of parameters that produce an overall effect on the output parameters 

of figure 7.1 was a variation in the pressure and the velocity during polishing.  The 

elastohydrodynamic regime or partial lubrication regime combines the optimum settings 

of pressure and velocity to ensure a balance between pad based wear and slurry based 

wear or the boundary lubrication regime and the full lubrication regime respectively.  The 

mixed lubrication regime combines the contact of the pad based wear with the 

entrenchment of the slurry during polishing.  The resulting wear is based on three body 

wear shown in figure 7.4. 
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Figure 7. 4 Three body wear 

 

Based on this research the optimal input polishing parameters for the BPM 

matrices result from using relatively low polish pressure and high velocities.  The 

Stribeck curve from these parameters on BPM CMP results in the partially lubricated 

polishing regime (as the Sommerfeld number is optimized for the input parameters and 

the in-situ COF is monitored).  This regime results in a median MRR from the pad based 

contact and atomic surface roughness of the BPM from the slurry chemistry and 

nanoparticle abrasive interaction.  

As with the slurry based wear the slurry nanoparticles must be harder than the 

surface they are polishing in order to ensure ploughing the wafer surface.  The surface 

chemistry must etch the surface to weaken the surface during polishing to aid in the 

MRR.  Characteristics of the slurry for the partial lubrication regime remain unchanged 

from the fully lubricated regime in part because the overall task to be completed by this 

type of wear remains the same, namely reducing the surface roughness during polishing.   
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During polishing of the partially lubricated regime the pad and wafer surface are 

in direct contact in combination with entrenchment of the slurry particles ploughing the 

surfaces of the wafer and the pad during CMP.  This is the optimal configuration for 

BPM polishing.  The pad based wear and slurry based wear interactions were coupled 

during polishing of the BPM and reduction of the pad lifetime was evident as the pad 

lifetime for BPM CMP falls below the IC-CMP industry average of 400-700 minutes of 

polishing for each pad.  Typical lifetimes for the commercial pads tested ranged from 80-

200 minutes, far below the industry average.  SEM and UTS results indicate the glazing 

effect during polishing which is indicative of slurry based wear, while the reduction in 

pad thickness and pad roughness coupled with the decrease in MRR are indicators of pad 

based wear.   Due to the atomic surface roughness required, high initial surface roughness 

of BPM, and the entrenchment of the slurry into the medium between the pad and the 

wafer during polishing, the glazing onset was much earlier than for typical IC-CMP pads 

dictating the need for new fabrication technology for polishing pads of BPM 

configurations. 

In order to incorporate CMP as the main planarization technique for the PM 

configurations several process advantageous and limitations must first be well 

understood.  CMP is able to polish the PM configuration, on both a local and global 

planarization scheme, to the required surface roughness values for the read/write head to 

work efficiently, but the drawback of the process comes at the high cost of this 

planarization.  The lower pressures and high initial surface roughness of the PM result in 

a higher number of polishing steps to reach required outputs.  The increase in process 

steps arises from the need to begin polishing based on pad based wear, where the contact 
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mechanics of the pad and wafer dominate polishing to wear down the high surface 

roughness.  The pad needs to transition to the partially lubricated regime in which the 

process still maintains an appreciable MRR but the PM surface begins to become 

smoother through the entrenchment of the slurry as an additional removal mechanism 

utilizing both chemical and mechanical effects.  The final polish should be maintained in 

the full lubrication regime in which is dictated by a low MRR and a lower surface 

roughness.  The final polish results in slurry based wear.  It should be noted that during 

the course of the transitions to polish to atomically smooth surfaces the pads will need to 

be replaced depending on the groove type and hardness value ( k-groove and shore 

hardness about 55 shore D for the optimized pad utilized in this experiment) for optimal 

output parameters.  The slurry will also be a provide high cost for PM CMP as the 

abrasive for polishing must be harder than the wafer surface (Mohrs hardness of 9-10) 

and the slurry chemistry for the material must be customized for the PM.  CMP is a 

viable and feasible process for planarization of the surface if there is no other 

methodologies are available but the magnetic storage industry must be willing to incur 

the initial high start up cost to utilize this technology. 
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CHAPTER 8:  CONCLUSION AND FUTURE WORK 

 

 

8.1 Conclusions 

 

As the superparamagnetic limit is reached, the magnetic storage industry looks to 

circumvent that barrier by implementing polymer and patterned media (PM) as a viable 

means to store and access data [26, 27].  The issue with PM is the ability of the magnetic 

read/write head to ―fly‖ over the data without crashing into the rough PM surfaces.  

Chemical mechanical planarization (CMP) is a semiconductor fabrication technique used 

to planarize surfaces in the multi-level metallization schemes for the integrated circuit 

(IC) industries.  The CMP technique is thereby employed to ensure that the PM is 

polished to surface roughness requirements of the magnetic storage industry that will 

allow the magnetic read/write head to move seamlessly across the PM.     

 Due to the novelty of PM fabrication, data on the output parameters of the CMP 

process based on the machine process parameters, pad properties, and slurry 

characteristics is extremely limited, and therefore benchmark data on a specific reversed 

patterned matrix was conducted and compared to standard IC fabrication CMP.  A 

reverse bit patterned media (BPM) matrix is tested in this research for benchmarking 

purposes.  The BPM is fabricated with silicon as the substrate, followed by barium and 

tantalum adhesion layers, and silicon dioxide with copper in the PM configuration.  The 

planarization of repeating patterns on a Cartesian grid in the reverse BPM configuration 

is fundamentally similar to PM configurations, and the interest of this dissertation lies in 

the fundamental science with CMP of these types of heterogeneous matrices (assuming 
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another material is the recession).  The research was conducted in a systematic manner 

shown in figure 8.1 [192-194]. 

 

 

Figure 8. 1 Process schematic for BPM CMP 

 

Based on figure 8.1, the process parameters were first determined for BPM CMP.  

These parameters include the machine parameters, pad characteristics and slurry 

characteristics. The parameters were then characterized individually and optimized based 

on the previous integration of parameters.  The machine process parameters were first 

investigated, followed by the pad characteristics during polishing, and finally 

investigation into the slurry characteristics on BPM was conducted.   

Following the characterization of the process, the quantitative and qualitative data 

from the experiments was then interpreted to determine the best applications for CMP on 
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BPM based on the systematic approach utilized in solving the problem. Results from this 

research has implications in feasibility studies of utilizing CMP as the main planarization 

technique for PM magnetic hard drive fabrication, sustainability in the consumables of 

the CMP process for fabrication, and practicability of  different slurry designs to polish 

BPM.  

A separate investigation was conducted which modeled the evolution of the 

mechanical properties during CMP process to determine the importance of microstructure 

during polishing.  This investigation looked at the process parameters and evaluated the 

mechanical properties to determine the best set of applications utilizing a simulation.  It 

should still be noted that the input parameters for both sets of experiments was based on 

IC CMP. 

 The input parameters for pressure and velocity dictate the resulting material 

removal and surface roughness of the CMP process [41, 42, 59, 83, 85, 178].  Results 

from a two factor-three level statistical analysis of variance, quantitative data are 

reported, and Stribeck curves of polishing of the BPM indicate that pressure is major 

driving factor in the material removal during polishing.  The optimal machine parameters 

for the surface roughness and material removal are at low polish pressures and high 

relative velocities.  These parameters ensure there is three-body abrasion between the 

pad, wafer surface, and abrasive particles in the slurry and polishing remains in the partial 

lubrication regime [55].  The mechanical properties during polishing were monitored and 

an increase in the shear strength during polishing is attributed to dislocation motion 

toward grain boundaries during polishing.  This phenomenon has been reported in 

previous literature for metal nanoindentation and polishing [145, 146, 195].  The 
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dislocation motion also leads to micro-cracks in the BPM and future research will address 

this problem.  

 Using the machine parameters from previously mentioned optimization, the 

consumables were characterized to determine their effect on polishing of BPM.  The 

MRR, COF, wafer surface roughness, pad roughness, and pad thickness were monitored 

and results indicate a deterioration of all the parameters versus polish time.  This 

deterioration is directly linked to the sustainability life of each pad.  A new non 

destructive ultrasound technique for evolution of the pad properties during polishing 

followed closely to quantitative data and this technique can be utilized to test future pads 

for enhanced pad life.  The optimum pad for BPM polishing was the IC 1400 dual layer 

Suba V pad with a shore hardness of 57, and a k groove pattern.  The softer, polyurethane 

matrix foam pad with x-y groove pattern was inadequate to polish PM configuration and 

should not be utilized in future PM fabrications.  The resulting pad life for PM polishing 

indicates a dramatic decrease is pad life for polishing of PM when compared to the IC 

CMP pads.  The feasibility of the magnetic storage industry utilizing CMP as the 

planarization process must incorporate the increase in costs for pad replacement.   

 The final consumable analyzed was the slurry for CMP of BPM.  Again, using the 

optimized machine parameters and optimized pad for polishing, the slurry polishing 

properties were evaluated and a novel nanodiamond (ND) slurry was created to 

benchmark the data on BPM and blanket copper polishing.  The process parameters 

remained constant during polishing and the resulting COF, MRR, and surface roughness 

were monitored.  The particles where characterized by DLS and TEM.  The NDs were 

suspended within the thermally responsive polymer matrix and provided better results for 
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polishing than the previously published polymer polishing results because the hard ND 

particles were a better abrasive for wear than the softer polymer slurry.  Upon successful 

synthesis and testing of the ND slurry, four different concentrations were created to test 

the saturation limit for the ND particles and the removal rate.  It was determined that 

beyond inclusion of 1.81x10
20

 ND particles in the solution, there is not an appreciable 

increase in the output metrics for polishing.  Neither the ND slurry nor the polymer slurry 

performed better than the commercially available Cabot iCue slurry for MRR or surface 

roughness, partially due to the chemical effects of the Cabot slurry on the surface of the 

BPM.  Although the commercially available slurry outperformed the ND slurry, the new 

ND slurry offered an improvement in MRR and surface roughness for blanket copper 

wafers when compared to polishing with the patented thermally responsive polymer 

[186-188].  Based on a cost-benefit analysis to incorporate the ND slurry to current CMP 

process metrics, the ND slurry is not cost effective for BPM CMP, but could be 

potentially used as a buffer step in the final polish of the PM.   

 A separate study on the importance of microstructure was conducted to determine 

how microstructural variation affects the polishing output metrics.  A two-part 

investigation was conducted in order to determine if a previously developed particle 

augmented mixed lubrication (PAML) model could be enhanced further through 

experimental validation.  The first part involved relating the critically resolved shear 

stress (CRSS) of a single crystal to an individual hardness value, and results indicate that 

currently there is not an empirical model or equation to relate the CRSS to the hardness 

value.  The second part of this investigation utilized the variation in hardness values from 

the initial study and incorporated these results into the PAML simulation.  Incorporation 
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of the variation of mechanical properties resulted in a surface topography with a 

difference in roughness from the bulk constant hardness value of 6nm, while the MRR of 

the process differs by 2.17 m
3
/s. 

8.2 Future Work 

 

The benchmarking of the data for BPM CMP involves a systematic approach to 

solving for the optimized input parameters enhance the output parameters.  The approach 

utilized in this dissertation took a methodical approach in which variations in each 

process parameter were tested individually, an optimization was found, and that 

optimized factor was imparted into the next phase as seen by the arrows in figure 8.1.  

This approach did not take into account a reversal in the input parameters and how the 

metrics would affect each other.  This means that the selection of the Rodel IC1400 pad 

as the optimized pad is a consequences of the optimized machine parameters of low 

polish pressure and high velocity.  A design of experiments which incorporates the 

effects of the individual pads or slurry on the different machine input parameters would 

increase the knowledge on the interactions CMP process properties. Figure 8.2 depicts a 

schematic of the current and future work for the process.  
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Figure 8. 2 Future work 

 

The green arrows represent the work and path currently taken in this research.  

The yellow arrows represent the interaction of the process parameters on each other and 

the resulting optimization that needs to be undertaken to gain further knowledge on the 

process.    

Research conducted was based on CMP of copper PM. While this is an option the 

magnetic storage industry has investigated most of the PM fabrication technology utilizes 

Co70Cr18Pt12 , nickel ferrite, or other polymer or highly magnetic metal films [11, 23, 26, 

196].  It should be noted that copper PM offers a worst case scenario for PM CMP, as the 

copper is the hardest material utilized for BPM out of the choices currently used.  This 

worst case scenario will ultimately result in a decrease in the pressures applied and 

number of polishing steps required for other materials in PM configuration, as copper has 

the highest mechanical properties and therefore greatest resistance to plastic deformation.  

Consequently since the polishing steps would be decreased, the pad life would be 

increased based on replacing the copper with less hard and less stiff polymers and metals.  

The slurry interaction cannot be fully understood for other materials as the slurry 
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chemistry utilized in experiments was specifically designed for copper CMP, although 

the abrasives in the slurry would remain effective.   

Research in this dissertation is a benchmark study on the CMP for PM as a intern 

fabrication step, due to the novelty of the project, the amount of future work described 

herein is extensive and the interactions between the phases and parameters warrants 

future work that may not be fully understood in this dissertation.  Future work for the 

process optimization of BPM CMP would include indexing the geometrical shape of the 

PM being polished.  The shapes of the PM, columns or bit pattern matrix form, have an 

effect on the tribological interaction during CMP.  The PM shape determines the area of 

contact between the wafer and pad along with the abrasives.  Thus, the amount of surface 

asperity interaction and the particle wafer interaction depends also on the PM shapes.  

The fluid film that is in contact with the wafer surface also is dependent on the PM shape.  

Scarfo et al., conducted polishing tests at different process conditions on different wafer 

samples with concave, convex and intermediate surface contours [65].  The study 

determined that the change in coefficient of friction is directly linked to changes within 

the shape.  The variability in the shape leads to a change in the Sommerfeld number due 

to changes in the process conditions because of the resulting contact area and pressure 

changes [65].  This study did not take into account shapes other than BPM configuration, 

based on the assumption that BPM wafers are single level wafers and the variability 

could be negligible.  Future studies should incorporate any PM shape variability.   

 Future work for pad characterization would incorporate the mechanical property 

evolution of the pads during BPM polishing.  Characterization and evaluation of the 

elastic modulus, shear modulus, and pad hardness during each polish step along with 
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results from ultrasound system would lead to a better model for prediction pad life for 

BPM CMP.   

 The commercial slurry performed better than the ND slurry created in this 

research, due to the effects of the slurry chemistry on the surface.  Future work for the 

slurry would incorporate an etchant and oxiders in the slurry chemistry to help weaken 

the surface prior to polishing.  The interaction of the thermally responsive polymer and 

ND particles with the slurry chemistry must be fully understood to optimize material 

removal.  This would require inherent knowledge of chemistry and surface mechanics 

making it a multidisciplinary problem to be solved. 

 The simulation work done in chapter 6, took into account only the mechanical 

interactions of the polishing process.  It is a mechanical polishing simulation with the 

evolution of microstructure displayed during abrasive polishing. The abrasive module 

predicted that the MRR during polishing changes as each copper grain is sheared away 

and a new grain is revealed which may have a different orientation resulting in a different 

hardness value.  Further studies into the grain boundary interaction during polishing 

warrants research for future work.  Most grains will get harder due to the dislocations 

piling up at the grain boundaries while others will become weaker as they are removed 

from the polishing surface.  This evolution of the mechanical properties due to grain 

boundary orientation parameters needs to be properly understood and implemented in the 

PAML simulation.  Future work for the simulation would also incorporate the slurry 

chemistry interaction with the surface to accurately predict the MRR and surface 

roughness.   
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Based on the benchmark data on the three phases of this research, CMP is a 

feasible process to planarize the BPM to atomically smooth surfaces.  In order to 

incorporate the CMP process the magnetic storage industry must understand the 

tribological issues that must first be overcome: 

1)  In order to polish the PM to atomic smoothness, low polish pressures and 

high velocities need to be incorporated. This will result in multiple polish 

steps (increasing cost) to insure local and global planarity. 

2) The CMP pads utilized to polish the PM will have a much shorter pad life 

than the IC CMP and this will result in an increase in the number of 

replacement pads as the optimal pad for polishing will last roughly half of the 

pad life for IC CMP. 

3) The commercial slurry for copper CMP is an adequate substitute for PM 

CMP, but a change in the material for polishing results in further research in 

the slurry chemistry for multiple materials.   

Successful implementation of CMP for the planarization step in PM fabrication 

must address the high initial start up cost, increase in the number of replacement pads, 

and increase in polishing time to reach the required surface roughness for magnetic 

storage devices. 
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APPENDIX A:  PHASE I MACHINE PARAMETERS 
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A.1 Machine Parameters WYKO Images 

 

 

 

Figure A. 1 1 Psi 0.2 relative velocity 
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Figure A. 2 1 Psi 0.8 relative velocity 
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Figure A. 3 1 Psi 1.2 relative velocity 

 

 

 

Figure A. 4 3 Psi 0.2 relative velocity 
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Figure A. 5 3 Psi 0.8 relative velocity 

 

 

 

Figure A. 6 3 Psi 1.2 relative velocity 
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Figure A. 7 6 Psi 0.2 relative velocity 

 

 

 

Figure A. 8  6 Psi 0.8 relative velocity 

 

  



www.manaraa.com

 

224 

 

APPENDIX A (CONT) 

 

 

 

Figure A. 9 6 Psi 1.2 relative velocity 
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A.2 COF Versus MRR 

 

 

 

Figure A. 10 COF vs. MRR for BPM 
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A.3 SEM Characterization of BPM Surfaces 

 

 

 

Figure A. 11 SEM of BPM delamination at 6 Psi 
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APPENDIX B:  PHASE II:  PAD CHARACTERIZATION DATA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 

228 

 

APPENDIX B (CONT) 
 

 

B.1 Pad Roughness Evolution 

 

 

 

Figure B. 1 Pad 1 (10 polishes) 
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Figure B. 2 Pad 1 (20 polishes) 

 

 

 

 

Figure B. 3 Pad 1 (30 polishes) 
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Figure B. 4 Pad 1 (40 polishes) 

 

 

 

Figure B. 5 Pad 1 (50 polishes) 
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Figure B. 6 Pad 2 (10 polishes) 

 

 

 

Figure B. 7 Pad 2 (20 polishes) 
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Figure B. 8 Pad 2 (30 polishes) 

 

 

 

Figure B. 9 Pad 2 (40 polishes) 
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Figure B. 10 Pad 2 (50 polishes) 

 

 

 

Figure B. 11 Pad 3 (10 polishes) 
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Figure B. 12 Pad 3 (20 polishes) 

 

 

 

 

 

Figure B. 13 Pad 3 (30 polishes) 
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Figure B. 14 Pad 3 (40 polishes) 

 

 

 

Figure B. 15 Pad 3 (50 polishes) 
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B.2 SEM Pad Characterization 

 

 

 

Figure B. 16 SEM morphology evolution 
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Figure B. 17 Pad (2) SEM morphology evolution 
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Figure B. 18 Pad (3) SEM morphology evolution 
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B.3 UTS Characterization 

 

 

 

Figure B. 19 Pad (1) UTS characterization 
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Figure B. 20 Pad (2) UTS characterization 
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Figure B. 21 Pad (3) UST characterization 
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B.4 Pad Characterization Results 

 

 

 

Figure B. 22 CMP pad roughness vs.COF 

 

 

 

Figure B. 23 BPM wafer roughness vs. COF 
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Figure B. 24 Wafer roughness vs. pad roughness 

 

 

 

Figure B. 25 MRR vs. pad roughness 
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